Matching Items (63)
148279-Thumbnail Image.png
Description

Telehealth is the use of information and communications technology by healthcare professionals to provide care to patients. When this technology is being used specifically for genetic services, it is called telegenetics. Previous studies that examine the small-scale use of telegenetics for the field of genetic counseling have shown that the

Telehealth is the use of information and communications technology by healthcare professionals to provide care to patients. When this technology is being used specifically for genetic services, it is called telegenetics. Previous studies that examine the small-scale use of telegenetics for the field of genetic counseling have shown that the technology may provide a way to address the problem of patient access to genetic counseling services, assuming its efficacy. Patients are satisfied with telegenetics, but genetic counselors hold more reservations. Because of this and the many regulatory barriers in its way, telegenetics was only slowly being adopted when the coronavirus was declared a pandemic in March 2020. The pandemic forced a switch to telegenetics at a scale never seen before. This study begins with a literature review to assess the situation of telegenetics before and during the pandemic. It then surveys practicing genetic counselors in Arizona in order to reveal what they think about telegenetics when it is the encouraged, and sometimes only, modality. Since the literature review revealed that genetic counselors, not patients, are the ones with concerns, it is important to hear their points of view. This study reveals that genetic counselors want telegenetics as an option but not as a replacement for in-person appointments. All respondents agreed that increased patient access is the main benefit of telegenetics. There are reported challenges that must be overcome, but genetic counselors in Arizona overwhelming believe that telegenetics use will be continued in the future.

ContributorsThornton, Gillian Frances (Author) / Hunt Brendish, Katherine (Thesis director) / Frow, Emma (Committee member) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135560-Thumbnail Image.png
Description
This thesis explores and analyzes the emergence of for-profit stem cell clinics in the United States, specifically in the Phoenix metropolitan area. Stem cell therapy is an emerging field that has great potential in preventing or treating a number of diseases. Certain companies are currently researching the application of stem

This thesis explores and analyzes the emergence of for-profit stem cell clinics in the United States, specifically in the Phoenix metropolitan area. Stem cell therapy is an emerging field that has great potential in preventing or treating a number of diseases. Certain companies are currently researching the application of stem cells as therapeutics. At present the FDA has only approved one stem cell-based product; however, there are a number of companies currently offering stem cell therapies. In the past five years, most news articles discussing these companies offering stem cell treatments talk of clinics in other countries. Recently, there seems to be a number of stem cell clinics appearing in the United States. Using a web search engine, fourteen stem cell clinics were identified and analyzed in the Phoenix metropolitan area. Each clinic was analyzed by their four key characteristics: business operations, stem cell types, stem cell isolation methods, and their position with the FDA. Based off my analysis, most of the identified clinics are located in Scottsdale or Phoenix. Some of these clinics even share the same location as another medical practice. Each of the fourteen clinics treat more than one type of health condition. The stem clinics make use of four stem cell types and three different isolation methods to obtain the stem cells. The doctors running these clinics almost always treat health conditions outside of their expertise. Some of these clinics even claim they are not subject to FDA regulation.
ContributorsAmrelia, Divya Vikas (Author) / Brafman, David (Thesis director) / Frow, Emma (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148500-Thumbnail Image.png
Description

As life expectancy increases worldwide, age related diseases are becoming greater health concerns. One of the most prevalent age-related diseases in the United States is dementia, with Alzheimer’s disease (AD) being the most common form, accounting for 60-80% of cases. Genetics plays a large role in a person’s risk of

As life expectancy increases worldwide, age related diseases are becoming greater health concerns. One of the most prevalent age-related diseases in the United States is dementia, with Alzheimer’s disease (AD) being the most common form, accounting for 60-80% of cases. Genetics plays a large role in a person’s risk of developing AD. Familial AD, which makes up less than 1% of all AD cases, is caused by autosomal dominant gene mutations and has almost 100% penetrance. Genetic risk factors are believed to make up about 49%-79% of the risk in sporadic cases. Many different genetic risk factors for both familial and sporadic AD have been identified, but there is still much work to be done in the field of AD, especially in non-Caucasian populations. This review summarizes the three major genes responsible for familial AD, namely APP, PSEN1 and PSEN2. Also discussed are seven identified genetic risk factors for sporadic AD, single nucleotide polymorphisms in the APOE, ABCA7, NEDD9, CASS4, PTK2B, CLU, and PICALM genes. An overview of the main function of the proteins associated with the genes is given, along with the supposed connection to AD pathology.

ContributorsRichey, Alexandra Emmeline (Author) / Brafman, David (Thesis director) / Raman, Sreedevi (Committee member) / School of International Letters and Cultures (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Within the last decade, there has been a lot of hype surrounding the potential medical applications of artificial intelligence (AI) and machine learning (ML) technologies. During the same timespan, big tech companies such as Microsoft, Apple, Amazon, and Google have entered the healthcare market as developers of health-based AI and

Within the last decade, there has been a lot of hype surrounding the potential medical applications of artificial intelligence (AI) and machine learning (ML) technologies. During the same timespan, big tech companies such as Microsoft, Apple, Amazon, and Google have entered the healthcare market as developers of health-based AI and ML technologies. This project aims to create a comprehensive map of the existing health-AI market landscape for the standard biotech reader and to provide a critical commentary on the existing market structure.

ContributorsWehelie, Sumayah A (Author) / Frow, Emma (Thesis director) / Maynard, Andrew (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131110-Thumbnail Image.png
Description
Homeopathy is a brand of alternative medicine that has enjoyed a unique form of regulation for many years. This work aims to understand the regulation of homeopathic drugs in the United States by performing a literature review focused on three fronts: (i) homeopathy (theory, history in the United States and

Homeopathy is a brand of alternative medicine that has enjoyed a unique form of regulation for many years. This work aims to understand the regulation of homeopathic drugs in the United States by performing a literature review focused on three fronts: (i) homeopathy (theory, history in the United States and criticisms), (ii) U.S Food and Drug Administration (history and relationship to homeopathy), and (iii) interpretation of the law through reading guidance documents and the Code of Federal Regulations.
In 2015, the FDA began a process to reevaluate and update the regulations surrounding homeopathic products to better fit their present risk-based model. Past regulations were set in 1938; and as the world evolved, these have been found to set inadequate standards. By reviewing the agency’s guidance drafts and core regulatory documents, we come to understand that these changes are motivated by a desire for homeopathic remedies to follow high standards that apply to other products for the benefit of the U.S. consumers. FDA has made significant advances by proposing new Guidances on homeopathic products, listening to homeopathic community and consumers, and withdrawing the Compliance Policy Guide 400.400 issued in 1988.
We recommend for homeopathic manufacturers and practitioners to see the FDA as an ally and cooperate fully with the proposed changes for the regulation the agency gives out. Doing so will give the homeopathic community the best chance at continuing to sell their products and reach their consumers in the United States. In the same token, the FDA should do their best to involve homeopathic professionals in some way in this regulatory process, to encourage participation and compliance by the broader homeopathic community. Doing so ensures a climate of teamwork among different facets of the medical community in the United States.
ContributorsRobayo, Juan Pablo (Author) / Pizziconi, Vincent (Thesis director) / Feigal, David (Committee member) / Frow, Emma (Committee member) / School of International Letters and Cultures (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131840-Thumbnail Image.png
Description
Genetic engineering, a development in science and technology that has enabled the genetic modification of crops among other organisms since the 1970s, has stirred heated debate among various stakeholders in the issue. This struggle is one consisting of two sides set in their own beliefs, refusing to even consider the

Genetic engineering, a development in science and technology that has enabled the genetic modification of crops among other organisms since the 1970s, has stirred heated debate among various stakeholders in the issue. This struggle is one consisting of two sides set in their own beliefs, refusing to even consider the validity of any opposition. As a result, it is difficult to establish common ground and attempt to develop policies and practices that can best suit all members involved while still being able to utilize a breakthrough technology in beneficial ways to society. This research project was conducted upon one particular case in the timeline of genetic modification of crops: the introduction of the Rainbow papaya in Hawaii in 1998 and its subsequent ramifications. The goal was to establish a more detailed understanding of the landscape of a debate that can appear to be based mainly upon the science of genetic engineering. Upon analysis of 22 news articles spanning the years 1999-2019 it was determined that the types of arguments themselves, both in favor of and against GM, fall into a wide range of categories that span much more than simply the science. Arguments both in favor and in opposition are nuanced and actually often seek similar end goals. There is potential to utilize these common goals and priorities in productive ways once stakeholders in the debate are aware of them. Finding commonalities will enable progress in the safe, effective implementation of a technology that has the potential to provide immense benefit in various ways in a manner that considers all perspectives involved.
ContributorsCartwright, Avery (Author) / Frow, Emma (Thesis director) / Bowman, Diana (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131790-Thumbnail Image.png
Description
Cell viability is an important assessment in cell culture to characterize the health of the cell population and confirm if cells are alive. Morphology or end-line assays are used to determine cell viability of entire populations. Intracellular pO2 levels is indicative of cell health and metabolism that can be used

Cell viability is an important assessment in cell culture to characterize the health of the cell population and confirm if cells are alive. Morphology or end-line assays are used to determine cell viability of entire populations. Intracellular pO2 levels is indicative of cell health and metabolism that can be used as a factor to asses cell viability in an in-line assay. Siloxane based pO2 sensing nanoprobes present a modality to visualize intracellular pO2. Using fluorescent lifetime imaging microscopy (FLIM), pO2 levels can be mapped intracellular as a highly functional in-line assay for cell viability. FLIM is an imaging modality that reconstructs an image based of its fluorescent lifetime. Nanoprobes were synthesized in different manufacturing/storage conditions. The nanoprobes for both long- and short-term storage were characterized in a cell free environment testing for changes in fluorescent intensity, average and maximum nanoprobe diameter. The nanoprobes were validated in two different culture systems, 2D and microcarrier culture systems, for human derived neural progenitor cells (NPCs) and neurons. Long- and short-term storage nanoprobes were used to label different neuronal based culture systems to asses labeling efficiency through fluorescent microscopy and flow cytometry. NPCs and neurons in each culture system was tested to see if nanoprobe labeling effected cellular phenotype for traits such as: cell proliferation, gene expression, and calcium imaging. Long-term and short-term storage nanoprobes were successfully validated for both NPCs and neurons in all culture systems. Assessments of the pO2 sensing nanoprobes will be further developed to create a highly functional and efficient in-line test for cell viability.
ContributorsLeyasi, Salma (Author) / Brafman, David (Thesis director) / Kodibagkar, Vikram (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131688-Thumbnail Image.png
Description
Over 5.8 million people are currently living with Alzheimer’s disease (AD), with the sixth highest mortality rate in the United States. No known cure or substantially life-extending treatment exists. With the growing aging population these numbers are only expected to increase to about 13.8 million by the year 2050. Alzheimer’s

Over 5.8 million people are currently living with Alzheimer’s disease (AD), with the sixth highest mortality rate in the United States. No known cure or substantially life-extending treatment exists. With the growing aging population these numbers are only expected to increase to about 13.8 million by the year 2050. Alzheimer’s is a multifactorial disease, giving rise to two main types: familial AD (FAD) and sporadic AD (SAD). Although there are different factors associated with each type of the disease, both FAD and SAD result in neuronal and synaptic loss and remain difficult to model in-vitro and treat overall.

Current advances in cellular models of neurodegenerative diseases overcome a variety of limitations possessed in animal and post-mortem human models. Human-induced pluripotent stem cells (hiPSCs) provide a platform with cells that can self-renew and differentiate into mature and functional cell types. HiPSCs are at the forefront of neurodegenerative disease research because of their ability to differentiate into neural cell types. Apolipoprotein E (ApoE) is a protein encoded by the APOE gene found on chromosome 19 of the human genome. There are three common polymorphisms in the APOE gene, resulting from a single amino acid change in the protein. The presence of these polymorphisms are studied as associated risk factors of developing AD. Different combinations of these alleles closely relate to the risk a patient has in developing Alzheimer’s disease. The risk associated effects of this gene are primarily investigated, however the protective effects are not examined to the same extent.

This research aims to overcome the existing limitations in cell differentiations and improve cell population purity that limits the variables present in the culture. To do this, this study optimized a differentiation protocol by separating and purifying neuronal cell populations to study the potential protective effects associated with ApoE, a risk factor seen in SAD. This platform aims to use a purified cell population to effectively analyze cell type specific affects of the ApoE risk factor, specifically in neurons.
ContributorsFrisch, Carlye Arin (Author) / Brafman, David (Thesis director) / Tian, Xiaojun (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131611-Thumbnail Image.png
Description
In this paper, I aim to assess the ethical and policy issues at the forefront of developmental biology, mainly, the 14-day guideline dictating human embryo research. Ever since the invention of in vitro fertilization in the 1970s, the research landscape of human embryo research has been well explored. Now, there

In this paper, I aim to assess the ethical and policy issues at the forefront of developmental biology, mainly, the 14-day guideline dictating human embryo research. Ever since the invention of in vitro fertilization in the 1970s, the research landscape of human embryo research has been well explored. Now, there are new embryonic technologies and human embryonic stem cell based models that many believe do not fit into current guidelines. This paper analyzes four of these new technologies-- stem cell derived gametes, embryoids, 3D printed embryos and synthetic embryos-- in order to explore the impetus for reopening the debate on the 14-day guideline. The paper then explores current research and research projects while comparing and contrasting science as well as the potential for moral status and how that impacts regulation. Current United States policies and regulations as well as current professional society guidelines are broken down to fully grasp the political landscape surrounding human embryo research. Notably, current policies include the complete lack of a federal definition of an embryo as well as the Dickey-Wicker Amendment which restrict funding for human embryo research. It is thus advised that these, along with the 14 day guideline, are updated in order to encapsulate the early human developmental research landscape and promote research. This paper ends with an in depth policy recommendation including (but not limited to) bill language, suggested definitions and potential strategies.
ContributorsNadone, Haley (Author) / Robert, Jason (Thesis director) / Frow, Emma (Committee member) / School of Life Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132624-Thumbnail Image.png
Description
Effectively modeling Alzheimer’s disease will lend to a more comprehensive
understanding of the disease pathology, more efficacious drug development and
regenerative medicine as a form of treatment. There are limitations with current
transgenic mouse models of Alzheimer’s disease and the study of post mortem brain tissue of Alzheimer’s diseases patients. Stem cell models

Effectively modeling Alzheimer’s disease will lend to a more comprehensive
understanding of the disease pathology, more efficacious drug development and
regenerative medicine as a form of treatment. There are limitations with current
transgenic mouse models of Alzheimer’s disease and the study of post mortem brain tissue of Alzheimer’s diseases patients. Stem cell models can overcome the lack of clinical relevance and impracticality associated with current models. Ideally, the use of stem cell models provides the foundation to study the biochemical and physiological aspects of Alzheimer’s disease, but at the cellular level. Moreover, the future of drug development and disease modeling can be improved by developing a reproducible and well-characterized model of AD that can be scaled up to meet requirements for basic and translational applications. Characterization and analysis of a heterogenic neuronal culture developed from induced pluripotent stem cells calls for the understanding of single cell identity and cell viability. A method to analyze RNA following intracellular sorting was developed in order to analyze single cell identity of a heterogenic population
of human induced pluripotent stem cells and neural progenitor cells. The population was intracellularly stained and sorted for Oct4. RNA was isolated and analyzed with qPCR, which demonstrated expected expression profiles for Oct4+ and Oct4- cells. In addition, a protocol to label cells with pO2 sensing nanoprobes was developed to assess cell viability. Non-destructive nanoprobe up-take by neural progenitor cells was assessed with fluorescent imaging and flow cytometry. Nanoprobe labeled neurons were cultured long-term and continued to fluoresce at day 28. The proof of concept experiments demonstrated will be further expanded upon and utilized in developing a more clinically relevant and cost-effective model of Alzheimer’s disease with downstream applications
in drug development and regenerative medicine.
ContributorsKnittel, Jacob James (Author) / Brafman, David (Thesis director) / Salvatore, Oddo (Committee member) / School of Life Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05