Matching Items (3)
Filtering by

Clear all filters

150037-Thumbnail Image.png
Description
Intimate coupling of Ti2 photocatalysis and biodegradation (ICPB) offers potential for degrading biorecalcitrant and toxic organic compounds much better than possible with conventional wastewater treatments. This study reports on using a novel sponge-type, Ti2-coated biofilm carrier that shows significant adherence of Ti2 to its exterior and the ability to accumulate

Intimate coupling of Ti2 photocatalysis and biodegradation (ICPB) offers potential for degrading biorecalcitrant and toxic organic compounds much better than possible with conventional wastewater treatments. This study reports on using a novel sponge-type, Ti2-coated biofilm carrier that shows significant adherence of Ti2 to its exterior and the ability to accumulate biomass in its interior (protected from UV light and free radicals). First, this carrier was tested for ICPB in a continuous-flow photocatalytic circulating-bed biofilm reactor (PCBBR) to mineralize biorecalcitrant organic: 2,4,5-trichlorophenol (TCP). Four mechanisms possibly acting of ICPB were tested separately: TCP adsorption, UV photolysis/photocatalysis, and biodegradation. The carrier exhibited strong TCP adsorption, while photolysis was negligible. Photocatalysis produced TCP-degradation products that could be mineralized and the strong adsorption of TCP to the carrier enhanced biodegradation by relieving toxicity. Validating the ICPB concept, biofilm was protected inside the carriers from UV light and free radicals. ICPB significantly lowered the diversity of the bacterial community, but five genera known to biodegrade chlorinated phenols were markedly enriched. Secondly, decolorization and mineralization of reactive dyes by ICPB were investigated on a refined Ti2-coated biofilm carrier in a PCBBR. Two typical reactive dyes: Reactive Black 5 (RB5) and Reactive Yellow 86 (RY86), showed similar first-order kinetics when being photocatalytically decolorized at low pH (~4-5), which was inhibited at neutral pH in the presence of phosphate or carbonate buffer, presumably due to electrostatic repulsion from negatively charged surface sites on Ti2, radical scavenging by phosphate or carbonate, or both. In the PCBBR, photocatalysis alone with Ti2-coated carriers could remove RB5 and COD by 97% and 47%, respectively. Addition of biofilm inside macroporous carriers maintained a similar RB5 removal efficiency, but COD removal increased to 65%, which is evidence of ICPB despite the low pH. A proposed ICPB pathway for RB5 suggests that a major intermediate, a naphthol derivative, was responsible for most of the residual COD. Finally, three low-temperature sintering methods, called O, D and DN, were compared based on photocatalytic efficiency and Ti2 adherence. The DN method had the best Ti2-coating properties and was a successful carrier for ICPB of RB5 in a PCBBR.
ContributorsLi, Guozheng (Author) / Rittmann, Bruce E. (Thesis advisor) / Halden, Rolf (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2011
150498-Thumbnail Image.png
Description
Contamination by chlorinated ethenes is widespread in groundwater aquifers, sediment, and soils worldwide. The overarching objectives of my research were to understand how the bacterial genus Dehalococcoides function optimally to carry out reductive dechlorination of chlorinated ethenes in a mixed microbial community and then apply this knowledge to manage dechlorinating

Contamination by chlorinated ethenes is widespread in groundwater aquifers, sediment, and soils worldwide. The overarching objectives of my research were to understand how the bacterial genus Dehalococcoides function optimally to carry out reductive dechlorination of chlorinated ethenes in a mixed microbial community and then apply this knowledge to manage dechlorinating communities in the hydrogen-based membrane biofilm reactor (MBfR). The MBfR is used for the biological reduction of oxidized contaminants in water using hydrogen supplied as the electron donor by diffusion through gas-transfer fibers. First, I characterized a new anaerobic dechlorinating community developed in our laboratory, named DehaloR^2, in terms of chlorinated ethene turnover rates and assessed its microbial community composition. I then carried out an experiment to correlate performance and community structure for trichloroethene (TCE)-fed microbial consortia. Fill-and-draw reactors inoculated with DehaloR^2 demonstrated a direct correlation between microbial community function and structure as the TCE-pulsing rate was increased. An electron-balance analysis predicted the community structure based on measured concentrations of products and constant net yields for each microorganism. The predictions corresponded to trends in the community structure based on pyrosequencing and quantitative PCR up to the highest TCE pulsing rate, where deviations to the trend resulted from stress by the chlorinated ethenes. Next, I optimized a method for simultaneous detection of chlorinated ethenes and ethene at or below the Environmental Protection Agency maximum contaminant levels for groundwater using solid phase microextraction in a gas chromatograph with a flame ionization detector. This method is ideal for monitoring biological reductive dechlorination in groundwater, where ethene is the ultimate end product. The major advantage of this method is that it uses a small sample volume of 1 mL, making it ideally suited for bench-scale feasibility studies, such as the MBfR. Last, I developed a reliable start-up and operation strategy for TCE reduction in the MBfR. Successful operation relied on controlling the pH-increase effects of methanogenesis and homoacetogenesis, along with creating hydrogen limitation during start-up to allow dechlorinators to compete against other microorgansims. Methanogens were additionally minimized during continuous flow operation by a limitation in bicarbonate resulting from strong homoacetogenic activity.
ContributorsZiv-El, Michal (Author) / Rittmann, Bruce E. (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Halden, Rolf U. (Committee member) / Arizona State University (Publisher)
Created2012
150481-Thumbnail Image.png
Description
The overall goal of this dissertation is to advance understanding of biofilm reduction of oxidized contaminants in water and wastewater. Chapter 1 introduces the fundamentals of biological reduction of three oxidized contaminants (nitrate, perchlorate, and trichloriethene (TCE)) using two biofilm processes (hydrogen-based membrane biofilm reactors (MBfR) and packed-bed heterotrophic reactors

The overall goal of this dissertation is to advance understanding of biofilm reduction of oxidized contaminants in water and wastewater. Chapter 1 introduces the fundamentals of biological reduction of three oxidized contaminants (nitrate, perchlorate, and trichloriethene (TCE)) using two biofilm processes (hydrogen-based membrane biofilm reactors (MBfR) and packed-bed heterotrophic reactors (PBHR)), and it identifies the research objectives. Chapters 2 through 6 focus on nitrate removal using the MBfR and PBHR, while chapters 7 through 10 investigate simultaneous reduction of nitrate and another oxidized compound (perchlorate, sulfate, or TCE) in the MBfR. Chapter 11 summarizes the major findings of this research. Chapters 2 and 3 demonstrate nitrate removal in a groundwater and identify the maximum nitrate loadings using a pilot-scale MBfR and a pilot-scale PBHR, respectively. Chapter 4 compares the MBfR and the PBHR for denitrification of the same nitrate-contaminated groundwater. The comparison includes the maximum nitrate loading, the effluent water quality of the denitrification reactors, and the impact of post-treatment on water quality. Chapter 5 theoretically and experimentally demonstrates that the nitrate biomass-carrier surface loading, rather than the traditionally used empty bed contact time or nitrate volumetric loading, is the primary design parameter for heterotrophic denitrification. Chapter 6 constructs a pH-control model to predict pH, alkalinity, and precipitation potential in heterotrophic or hydrogen-based autotrophic denitrification reactors. Chapter 7 develops and uses steady-state permeation tests and a mathematical model to determine the hydrogen-permeation coefficients of three fibers commonly used in the MBfR. The coefficients are then used as inputs for the three models in Chapters 8-10. Chapter 8 develops a multispecies biofilm model for simultaneous reduction of nitrate and perchlorate in the MBfR. The model quantitatively and systematically explains how operating conditions affect nitrate and perchlorate reduction and biomass distribution via four mechanisms. Chapter 9 modifies the nitrate and perchlorate model into a nitrate and sulfate model and uses it to identify operating conditions corresponding to onset of sulfate reduction. Chapter 10 modifies the nitrate and perchlorate model into a nitrate and TCE model and uses it to investigate how operating conditions affect TCE reduction and accumulation of TCE reduction intermediates.
ContributorsTang, Youneng (Author) / Rittmann, Bruce E. (Thesis advisor) / Westerhoff, Paul (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Halden, Rolf (Committee member) / Arizona State University (Publisher)
Created2012