Matching Items (74)
149526-Thumbnail Image.png
Description
While the entire human genome has been sequenced, the understanding of its functional elements remains unclear. The Encyclopedia of DNA Elements (ENCODE) project analyzed 1% of the human genome and found that the majority of the human genome is transcribed, including non-protein coding regions. The hypothesis is that some of

While the entire human genome has been sequenced, the understanding of its functional elements remains unclear. The Encyclopedia of DNA Elements (ENCODE) project analyzed 1% of the human genome and found that the majority of the human genome is transcribed, including non-protein coding regions. The hypothesis is that some of the "non-coding" sequences are translated into peptides and small proteins. Using mass spectrometry numerous peptides derived from the ENCODE transcriptome were identified. Peptides and small proteins were also found from non-coding regions of the 1% of the human genome that the ENCODE did not find transcripts for. A large portion of these peptides mapped to the intronic regions of known genes, thus it is suspected that they may be undiscovered exons present in alternative spliceoforms of certain genes. Further studies proved the existence of polyadenylated RNAs coding for these peptides. Although their functional significance has not been determined, I anticipate the findings will lead to the discovery of new splice variants of known genes and possibly new transcriptional and translational mechanisms.
ContributorsWang, Lulu (Author) / Lake, Douglas (Thesis advisor) / Chang, Yung (Committee member) / Touchman, Jeffery (Committee member) / Arizona State University (Publisher)
Created2010
149418-Thumbnail Image.png
Description
Host organisms have evolved multiple mechanisms to defend against a viral infection and likewise viruses have evolved multiple methods to subvert the host's anti-viral immune response. Vaccinia virus (VACV) is known to contain numerous proteins involved in blocking the cellular anti-viral immune response. The VACV E3L protein is

Host organisms have evolved multiple mechanisms to defend against a viral infection and likewise viruses have evolved multiple methods to subvert the host's anti-viral immune response. Vaccinia virus (VACV) is known to contain numerous proteins involved in blocking the cellular anti-viral immune response. The VACV E3L protein is important for inhibiting the anti-viral immune response and deletions within this gene lead to a severe attenuation. In particular, VACV containing N-terminal truncations in E3L are attenuated in animal models and fail to replicate in murine JC cells. Monkeypox virus (MPXV) F3L protein is a homologue of the VACV E3L protein, however it is predicted to contain a 37 amino acid N-terminal truncation. Despite containing an N-terminal truncation in the E3L homologue, MPXV is able to inhibit the anti-viral immune response similar to wild-type VACV and able to replicate in JC cells. This suggests that MPXV has evolved another mechanism(s) to counteract host defenses and promote replication in JC cells. MPXV produces less dsRNA than VACV during the course of an infection, which may explain why MPXV posses a phenotype similar to VACV, despite containing a truncated E3L homologue. The development of oncolytic viruses as a therapy for cancer has gained interest in recent years. Oncolytic viruses selectively replicate in and destroy cancerous cells and leave normal cells unharmed. Many tumors possess dysregulated anti-viral signaling pathways, since these pathways can also regulate cell growth. Creating a mutation in the N-terminus of the VACV-E3L protein generates an oncolytic VACV that depends on dysregulated anti-viral signaling pathways for replication allowing for direct targeting of the cancerous cells. VACV-E3Ldel54N selectively replicates in numerous cancer cells lines and not in the normal cell lines. Additionally, VACV-E3Ldel54N is safe and effective in causing tumor regression in a xenograph mouse model. Lastly, VACV-E3Ldel54N was capable of spreading from the treated tumors to the untreated tumors in both a xenograph and syngeneic mouse model. These data suggest that VACV-E3Ldel54N could be an effective oncolytic virus for the treatment of cancer.
ContributorsArndt, William D (Author) / Jacobs, Bertram (Thesis advisor) / Curtiss Iii, Roy (Committee member) / Chang, Yung (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2010
131931-Thumbnail Image.png
Description
Small cell carcinoma of the ovary (SCCOHT) is a rare ovarian cancer affecting young women and characterized by mutation in SMARCA4 and silencing of SMARCA2, two tumor suppressors that function as ATPases in the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. SCCOHT patients face a 5-year survival rate of only 26%,

Small cell carcinoma of the ovary (SCCOHT) is a rare ovarian cancer affecting young women and characterized by mutation in SMARCA4 and silencing of SMARCA2, two tumor suppressors that function as ATPases in the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. SCCOHT patients face a 5-year survival rate of only 26%, but recently we have identified sensitivity of SCCOHT models to a natural product, triptolide. This study aims to ascertain the mechanism of action of triptolide. Previous SCCOHT epigenetic drug research has shown that some drugs reverse SMARCA2 epigenetic silencing to inhibit tumor growth, therefore it is hypothesized that triptolide acts the same and restores SWI/SNF function. Cells treated with triptolide have no change in SMARCA2 expression, suggesting that re-expression of epigenetically silenced tumor suppressor gene does not underlie its mechanism of action. Growth rates following triptolide treatment were observed in the presence and absence of SMARCA4, but no difference in sensitivity was observed. Thus, it is not likely that triptolide acts by restoring SWI/SNF. Others have observed that triptolide acts on xeroderma pigmentosa type B protein (XPB), a component of super-enhancers, which are DNA regions with high levels of transcription that regulate genes responsible for cell identity and oncogenes driving tumorigenesis. Both SCCOHT-1 and BIN67 cell lines treated with triptolide displayed lower expression of the super-enhancer associated MYC oncogene compared to untreated cells, supporting the theory that triptolide could be inhibiting super-enhancers regulating oncogenes.. A western blot confirmed reduced protein levels of RNA polymerase II and bromodomain 4 (BRD4), two essential components found at high levels at super-enhancers, in BIN67 cells treated with triptolide. ChIP-sequencing of Histone H3 Lysine-27 Acetylation (H3K27ac) marks in BIN67 and SCCOHT-1 cell lines identified super-enhancers in SCCOHT using tools CREAM and ROSE, which were mapped to neighboring genes associated genes and compared with the COSMIC database to identify oncogenes, of which the top 11 were examined by qRT-PCR to ascertain whether triptolide reduces their expression. It has been found that 6 out of 11 of the oncogenes examined (SALL4, MYC, SGK1, HIST1H3B, HMGA2, and CALR) decreased in expression when treated with triptolide. Thus, there is reason to believe that triptolide’s mechanism of action is via inhibition of super-enhancers that regulate oncogene expression.
ContributorsViloria, Nicolle Angela (Author) / Lake, Douglas (Thesis director) / Hendricks, William (Committee member) / Lang, Jessica (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
With cancer rates increasing and affecting more people every year, I felt it was important to educate the younger generation about the potential factors that could put them at risk of receiving a cancer diagnosis later in life. I thought that this was important to do because most students, especially

With cancer rates increasing and affecting more people every year, I felt it was important to educate the younger generation about the potential factors that could put them at risk of receiving a cancer diagnosis later in life. I thought that this was important to do because most students, especially in rural communities, are not taught the factors that increase your risk of getting cancer in the future. This leads to students not having the tools to think about the repercussions that their actions can have in their distant future in regard to their risk of getting cancer. I went to six schools throughout the valley and the White Mountains of Arizona with differing education levels and demographics to provide them with prevention strategies that they could implement into their daily lives to reduce their risk of getting cancer in the future. Some of the schools had curriculums that included cancer and some of the factors that increase your risk, while others never mention what is happening biologically when a person has cancer. I introduced factors such as no smoking or tobacco use, diet, exercise, sunscreen use, avoiding alcohol, and getting screened regularly. While at each school, I discussed the importance of creating these healthy habits while they are young because cancer is a disease that comes from the accumulation of mutations that can begin occurring in their bodies even now. After my presentation, 98.6% of the 305 students who viewed my presentation felt like they had learned something from the presentation and were almost all willing to implement at least one of the changes into their daily lives.
ContributorsGoforth, Michelle Nicole (Author) / Compton, Carolyn (Thesis director) / Lake, Douglas (Committee member) / Popova, Laura (Committee member) / Dean, W.P. Carey School of Business (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131179-Thumbnail Image.png
Description
Impairments to mitochondrial function and metabolism can make neurons vulnerable to stress and degeneration. Several studies have shown that aberrations in the electron transport chain (ETC) and the Krebs cycle are involved in the pathogenesis of Parkinson’s disease (PD). Therefore, targeting these pathways is becoming increasingly important in the discovery

Impairments to mitochondrial function and metabolism can make neurons vulnerable to stress and degeneration. Several studies have shown that aberrations in the electron transport chain (ETC) and the Krebs cycle are involved in the pathogenesis of Parkinson’s disease (PD). Therefore, targeting these pathways is becoming increasingly important in the discovery of new treatment for neurodegenerative diseases like PD. (−)-epigallocatechin-3-gallate (EGCG), the most common polyphenol found in Green tea, has been shown to exert neuroprotective effects and lower the risk of developing PD. However, the mechanism by which it accomplishes this remains to be elucidated. The purpose of this study was to shed light on these mechanisms by exploring the effects of EGCG against MPP+-induced mitochondrial dysfunction with PC12 cells being used as a PD pathological cell model. The cell viability differences between cells treated with varying combinations of MPP+ and EGCG were measured using a CCK-8 assay. The morphology changes induced by the different treatments were then identified with fluorescence microscopy. Next, a Seahorse assay was carried out to investigate mitochondrial function followed by GC-MS and LC-MS analysis to evaluate mitochondrial metabolism. 13C metabolic flux analysis was then used to trace the metabolic flux of the Krebs cycle. The results of the CCK-8 assay and fluorescence microscopy showed that EGCG helps attenuate the decreased viability of PC12 cells as well as the morphology changes induced by MPP+. The Seahorse and GC-MS assay found that the it also helps prevent impaired mitochondrial respiration caused by MPP+. The impaired mitochondrial respiration manifested as alterations to the Krebs cycle and glycolysis. In addition, 13C metabolic flux analysis revealed significant increases in Krebs cycle activity in MPP+-induced PC12 cells if treated with EGCG beforehand. Moreover, LC-MS showed a distinct metabolite profile for each group and identified 26 potent biomarkers. In conclusion, this study demonstrated that EGCG exerts a neuroprotective effect on PC12 cells and helps maintain mitochondrial metabolic balance in the presence of MPP+.
ContributorsLawrence, Kent Alexander (Author) / Gu, Haiwei (Thesis director) / Lake, Douglas (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133633-Thumbnail Image.png
Description
Programmed cell death ligand-1 (PD-L1) is an overexpressed protein on many tumor cell types. PD-L1 is involved in normal immune regulation, playing an important role in self-tolerance and controlling autoimmunity. However, ligation of PD-L1 to PD-1 on activated T cells leads to tumor-mediated T cell suppression. Inhibiting the PD-1/PD-L1 pathway

Programmed cell death ligand-1 (PD-L1) is an overexpressed protein on many tumor cell types. PD-L1 is involved in normal immune regulation, playing an important role in self-tolerance and controlling autoimmunity. However, ligation of PD-L1 to PD-1 on activated T cells leads to tumor-mediated T cell suppression. Inhibiting the PD-1/PD-L1 pathway has emerged as an effective target for anti-tumor immunotherapies. Monoclonal antibodies (mAbs) targeting tumor-associated antigens such as PD-L1 have proven to be effective checkpoint blockades, improving therapeutic outcomes for cancer patients and receiving FDA approval as first line therapies for some cancers. A single chain variable fragment (scFv) is composed of the variable heavy and light chain regions of a mAb, connected by a flexible linker. We hypothesized that scFv proteins based on the published anti-PD-L1 monoclonal antibody sequences of atezolizumab and avelumab would bind to cell surface PD-L1. Four single chain variable fragments (scFvs) were constructed based on the sequences of these mAbs. PCR was used to assemble, construct, and amplify DNA fragments encoding the scFvs which were subsequently ligated into a eukaryotic expression vector. Mammalian cells were transfected with the scFv and scFv-IgG plasmids. The scFvs were tested for binding to PD-L1 on tumor cell lysates by western blot and to whole tumor cells by staining and flow cytometry analysis. DNA sequence analysis demonstrated that the scFv constructs were successfully amplified and cloned into the expression vectors and recombinant scFvs were produced. The binding capabilities of the scFvs constucts to PD-L1 protein were confirmed by western blot and flow cytometry analysis. This lead to the idea of constructing a CAR T cell engineered to target PD-L1, providing a possible adoptive T cell immunotherapy.
ContributorsPfeffer, Kirsten M. (Author) / Lake, Douglas (Thesis director) / Ho, Thai (Committee member) / Hastings, Karen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134076-Thumbnail Image.png
Description
Exosomes have been known to secrete an increased amount of miRNA and noncoding genes that are abnormally expressed in various cancer subtypes. Thus, they may be an early marker for pediatric cancer types that are more difficult to diagnosis without invasive techniques, and may also help identify progression of the

Exosomes have been known to secrete an increased amount of miRNA and noncoding genes that are abnormally expressed in various cancer subtypes. Thus, they may be an early marker for pediatric cancer types that are more difficult to diagnosis without invasive techniques, and may also help identify progression of the disease. In the project, six types of pediatric cancer cell lines, along with their extracted exosomes, were analyzed and tested for different monoclonal antibodies through western blot analysis. The genes EWS-FLI1 and FGFR4 were also identified in some cancer cell lines through Reverse-Transcriptase Polymerase Chain Reaction analysis (RT-PCR). The results were indicative of similar protein markers being found in both the originating cells and their corresponding exosomes.
ContributorsKaur Bhinder, Harsimran (Author) / Lake, Douglas (Thesis director) / Azorsa, David (Committee member) / Barrett, The Honors College (Contributor)
Created2017-12
134629-Thumbnail Image.png
Description
Valley Fever, also known as coccidioidomycosis, is a respiratory disease that affects 10,000 people annually, primarily in Arizona and California. Due to a lack of gene annotation, diagnosis and treatment of Valley Fever is severely limited. In turn, gene annotation efforts are also hampered by incomplete genome sequencing. We intend

Valley Fever, also known as coccidioidomycosis, is a respiratory disease that affects 10,000 people annually, primarily in Arizona and California. Due to a lack of gene annotation, diagnosis and treatment of Valley Fever is severely limited. In turn, gene annotation efforts are also hampered by incomplete genome sequencing. We intend to use proteogenomic analysis to reannotate the Coccidioides posadasii str. Silveira genome from protein-level data. Protein samples extracted from both phases of Silveira were fragmented into peptides, sequenced, and compared against databases of known and predicted proteins sequences, as well as a de novo six-frame translation of the genome. 288 unique peptides were located that did not match a known Silveira annotation, and of those 169 were associated with another Coccidioides strain. Additionally, 17 peptides were found at the boundary of, or outside of, the current gene annotation comprising four distinct clusters. For one of these clusters, we were able to calculate a lower bound and an estimate for the size of the gap between two Silveira contigs using the Coccidioides immitis RS transcript associated with that cluster's peptides \u2014 these predictions were consistent with the current annotation's scaffold structure. Three peptides were associated with an actively translated transposon, and a putative active site was located within an intact LTR retrotransposon. We note that gene annotation is necessarily hindered by the quality and level of detail in prior genome sequencing efforts, and recommend that future studies involving reannotation include additional sequencing as well as gene annotation via proteogenomics or other methods.
ContributorsSherrard, Andrew (Author) / Lake, Douglas (Thesis director) / Grys, Thomas (Committee member) / Mitchell, Natalie (Committee member) / Computing and Informatics Program (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
160710-Thumbnail Image.png
Description

In order to determine whether the spatial organization of FRCs and their expression of maturation markers (such as Ltbr) are altered with age, I performed immunofluorescence on frozen and cryosectioned whole lymph nodes from young and aged mice. My second aim was to perform RT-qPCR and flow cytometry in order

In order to determine whether the spatial organization of FRCs and their expression of maturation markers (such as Ltbr) are altered with age, I performed immunofluorescence on frozen and cryosectioned whole lymph nodes from young and aged mice. My second aim was to perform RT-qPCR and flow cytometry in order to determine whether FRCs from aged mice have altered expression of maturation markers when compared to young mice. Thus, the goal of the honors thesis research was to determine whether lymph node FRCs in the aged mouse exhibit signs of impaired maturation in their protein and gene expression. As the immune system is profoundly impacted by aging, my project supports a cellular mechanism by which defects in aged tissues disrupt immune cell function. Therefore, understanding the age-associated decline in host defense could provide new avenues for the treatment of many diseases of which the elderly are most vulnerable, in particular re-emerging and novel pathological agents such as COVID-19.

ContributorsMorris, Karina (Author) / Lake, Douglas (Thesis director) / Lancaster, Jessica (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
172007-Thumbnail Image.png
Description
IOsteosarcoma is the most common bone cancer and typically affects patients in the second decade of life. Current treatment methods have not proven effective for treating reoccurring or metastatic osteosarcoma (mOS) given the 5-year survival rate of 15-30%. Previous work showed that using the immune system to fight the cancer

IOsteosarcoma is the most common bone cancer and typically affects patients in the second decade of life. Current treatment methods have not proven effective for treating reoccurring or metastatic osteosarcoma (mOS) given the 5-year survival rate of 15-30%. Previous work showed that using the immune system to fight the cancer significantly improved survival of mOS in mice, but approximately 40-50% of treated mice still succumbed to disease. To further improve immunotherapy, I analyzed immune cells in the tumor bed and observed high numbers of a rare T cell subtype: CD4hiCD8αhi, or double positive (DP), T cells. While previous literature found mature DP T cells in chronic diseases, the associations and functions of this rare T cell subtype varied between studies and were unknown for mOS. Controlling for age, chronicity of disease, and environmental exposure, I found DP T cells composed a higher percentage of T cells in the cancer as tumor burden increased. I then tested whether the DP cells were pro- or anti-tumor. I found that DP cells produced the cytokines IFNγ and IL-2 when exhaustion was overcome. They also expressed FasL for cytotoxic function, although the target is unknown. These findings suggest DP T cells have multifunctionality, which could be advantageous when responding to high antigen load. II Course-based undergraduate research experiences (CUREs) offer students opportunities to engage in critical thinking and problem solving. However, quantitating the impact that incorporating research into undergraduate courses has on student learning has been difficult since most CUREs lack a comparable traditional course as a control. Because the overall class structure remained unaltered when our upper division immunology course transitioned to a CURE class, we realized retrospectively that we were in a unique position to quantitate the impact of incorporating research on student performance. I then analyzed the summative assessments used to assess student learning and found that students in the CURE format class performed significantly better on quizzes, exams, and reports. There were no significant differences in academic levels, degree programs, or grade point averages, suggesting improved performance was due to increased engagement of students in research.
ContributorsAppel, Nicole (Author) / Blattman, Joseph (Thesis advisor) / Anderson, Karen (Committee member) / Lake, Douglas (Committee member) / Hingorani, Pooja (Committee member) / Arizona State University (Publisher)
Created2022