Matching Items (3)
Filtering by

Clear all filters

150735-Thumbnail Image.png
Description
I present the results of studies from two historically separate fields of research: heat related illness and human thermal comfort adaptation. My research objectives were: (a) to analyze the relationships between climate and heat related morbidity in Phoenix, Arizona and Chicago, Illinois; (b) explore possible linkages of human thermal comfort

I present the results of studies from two historically separate fields of research: heat related illness and human thermal comfort adaptation. My research objectives were: (a) to analyze the relationships between climate and heat related morbidity in Phoenix, Arizona and Chicago, Illinois; (b) explore possible linkages of human thermal comfort adaptation to heat-related illness; and (c) show possible benefits of collaboration between the two fields of research. Previous climate and mortality studies discovered regional patterns in summertime mortality in North America: lower in hot, southern cities compared to more temperate cities. I examined heat related emergency (911) dispatches from these two geographically and climatically different cities. I analyzed with local weather conditions with 911 dispatches identified by responders as "heat" related from 2001 to 2006 in Phoenix and 2003 through 2006 in Chicago. Both cities experienced a rapid rise in heat-related dispatches with increasing temperature and heat index, but at higher thresholds in Phoenix. Overall, Phoenix had almost two and half times more heat-related dispatches than Chicago. However, Phoenix did not experience the large spikes of heat-related dispatches that occurred in Chicago. These findings suggest a resilience to heat-related illness that may be linked to acclimatization in Phoenix. I also present results from a survey based outdoor human thermal comfort field study in Phoenix to assess levels of local acclimatization. Previous research in outdoor human thermal comfort in hot humid and temperate climates used similar survey-based methodologies and found higher levels of thermal comfort (adaptation to heat) that in warmer climates than in cooler climates. The study presented in this dissertation found outdoor thermal comfort thresholds and heat tolerance levels in Phoenix were higher than previous studies from temperate climates more similar to Chicago. These differences were then compared to the differences in weather conditions associated with heat-related dispatches. The higher comfort thresholds in Phoenix were similar in scale to the climate differences associated with the upsurge in heat-related dispatches in Phoenix and Chicago. This suggests a link between heat related illness and acclimatization, and illustrates potential for collaboration in research between the two fields.
ContributorsHartz, Donna (Author) / Brazel, Anthony J. (Thesis advisor) / Heisler, Gordon (Committee member) / Cerveny, Randal (Committee member) / Arizona State University (Publisher)
Created2012
157061-Thumbnail Image.png
Description
Monsoon hazards routinely affect the community, economy, and environment of the American Southwest. A common link for hazard development during the North American Monsoon concerns the interplay between temperature, moisture, and wind in the vertical atmosphere controlled by an unstable monsoon circulation. This dissertation investigates vertical atmospheric patterns using in-situ

Monsoon hazards routinely affect the community, economy, and environment of the American Southwest. A common link for hazard development during the North American Monsoon concerns the interplay between temperature, moisture, and wind in the vertical atmosphere controlled by an unstable monsoon circulation. This dissertation investigates vertical atmospheric patterns using in-situ sounding data, specifically, 1) environments favorable for severe hail on the Colorado Plateau, 2) significant parameters distinguishing unhealthy versus healthy ozone days in Phoenix, Arizona, and 3) vertical profile alignments associated with distinct ranges in ozone concentrations observed in Phoenix having defined health impacts.

The first study (published in the Journal of the Arizona-Nevada Academy of Science) determines significant variables on Flagstaff, Arizona 12Z rawinsonde data (1996-2009) found on severe hail days on the Colorado Plateau. Severe hail is related to greater sub-300 hectopascals (hPa) moisture, a warmer atmospheric column, lighter above surface wind speeds, more southerly to southeasterly oriented winds throughout the vertical (except at the 700 hPa pressure level), and higher geopotential heights.

The second study (published in Atmospheric Environment) employs principal component, linear discriminant, and synoptic composite analyses using Phoenix, Arizona rawinsonde data (2006-2016) to identify common monsoon patterns affecting ozone accumulation in the Phoenix metropolitan area. Unhealthy ozone occurs with amplified high-pressure ridging over the Four Corners region, 500 hPa heights often exceeding 5910 meters, surface afternoon temperatures typically over 40°C, lighter wind speeds in the planetary boundary layer under four ms-1, and persistent light easterly flow between 700-500 hPa countering the daytime mountain-valley circulation.

The final study (under revision in Weather and Forecasting) assesses composite atmospheric sounding analysis to forecast Air Quality Index ozone classifications of Good, Moderate, and collectively categories exceeding the U.S. EPA 2015 standard. The analysis, using Phoenix 12Z rawinsonde data (2006-2017), identifies the existence of “pollutant dispersion windows” for ozone accumulation and dispersal in Phoenix.

Ultimately, monsoon hazards result from a complex and evolving vertical atmosphere. This dissertation demonstrates the viability using available in-situ vertical upper-air data to anticipate recurring atmospheric states contributing to specific hazards. These results will improve monsoon hazard prediction in an effort to protect public and infrastructure.
ContributorsMalloy, Jonny William (Author) / Cerveny, Randall S. (Thesis advisor) / Selover, Nancy J (Committee member) / Brazel, Anthony J. (Committee member) / Balling, Robert C. (Committee member) / Arizona State University (Publisher)
Created2019
128945-Thumbnail Image.png
Description

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat reversal at night. The plausibility of the LUMPS model results was tested using remotely sensed surface temperatures from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery and reference evapotranspiration values from a meteorological station. Cooling efficiency was derived from sensible and latent heat flux differences. The time when the sensible heat flux turns negative (sensible heat flux transition) was calculated from LUMPS simulated hourly fluxes. Results indicate that the time when the sensible heat flux changes direction at night is strongly influenced by the heat storage capacity of different land cover types and by the amount of vegetation. Higher heat storage delayed the transition up to 3 h in the study area, while vegetation expedited the sensible heat reversal by 2 h. Cooling efficiency index results suggest that overall, the Phoenix urban core is slightly more efficient at cooling than the desert, but efficiencies do not increase much with wet fractions higher than 20%. Industrial sites with high impervious surface cover and low wet fraction have negative cooling efficiencies. Findings indicate that drier neighborhoods with heterogeneous land uses are the most efficient landscapes in balancing cooling and water use in Phoenix. However, further factors such as energy use and human vulnerability to extreme heat have to be considered in the cooling-water use tradeoff, especially under the uncertainties of future climate change.

ContributorsMiddel, Ariane (Author) / Brazel, Anthony J. (Author) / Kaplan, Shai (Author) / Myint, Soe W. (Author)
Created2012-08-12