Matching Items (23)
149093-Thumbnail Image.png
Description
Bacteria are often regarded s pathogens, with deleterious impacts on the human body. However, it is known that the presence of trillions of bacteria on and in the human body impart beneficial effects on human health. Like a fingerprint, each individual’s microbiome is unique. The composition of bacteria in one

Bacteria are often regarded s pathogens, with deleterious impacts on the human body. However, it is known that the presence of trillions of bacteria on and in the human body impart beneficial effects on human health. Like a fingerprint, each individual’s microbiome is unique. The composition of bacteria in one person’s gut is different from the gut bacteria in another individual. Together, the human gut microbiome is a complex mix of organisms that is commonly referred to as “the second brain.� Its role in the human body goes beyond digestion and immune system function. The health of the microbiome factors into risk for illnesses as diverse as depression, obesity, bowel disorders and autism (Perlmutter et al., 2015). In context of the myriad of bacteria that live on and within the human body, the composition of bacteria in the gut may have the most significant impact on an individual’s well-being. This “superorganism� co-evolved with its host in order to provide essential and mutually beneficial functions (Ragonnaud et al., 2021).

Affecting millions of Americans, depression is one of the leading causes of the Global Burden of Disease (GBD), followed by anxiety (Gibson-Smith et al., 2018). Communication that occurs between the human brain and the gut microbiome has been found to be a major contributor towards mental health. The human gut microbiome is comprised of many microbes that can communicate with the brain through the gut-brain axis. However, factors such as stress and diets can interfere with this process, especially after increasing the permeability of the intestine (Khoshbin et al., 2020). Perturbation of the gut-brain axis has been implicated across a wide scale of neurodegenerative disorders, with respect to psychopathology (Bonaz et al., 2018). The environment of the gut, along with which species reside there, can help determine the link between gut function and disease. Therefore, it may be possible to prevent the degradation of an individual’s immune function and well-being through alteration of the gut microbiome. (abstract)
ContributorsPisarczyk, Nicole (Author) / Penton, Christopher (Thesis director) / Huffman, Holly (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
137715-Thumbnail Image.png
Description
The objectives of this review include a discussion of the West Nile Virus phylogeny, transmission history, how the virus functions in the body and how it is a threat to public health, and then discusses these items related to vaccine technology surrounding West Nile Virus. This will include past developments,

The objectives of this review include a discussion of the West Nile Virus phylogeny, transmission history, how the virus functions in the body and how it is a threat to public health, and then discusses these items related to vaccine technology surrounding West Nile Virus. This will include past developments, current research in the field and what it may take to develop such a vaccine safe and economical for human usage.
ContributorsSlinker, Haleigh Renee (Author) / Chen, Qiang (Thesis director) / Huffman, Holly (Committee member) / Oberstein, Bruce (Committee member) / Barrett, The Honors College (Contributor) / School of Letters and Sciences (Contributor)
Created2013-05
148393-Thumbnail Image.png
Description

Vaccines are modern medicine’s best way of combating the majority of viral and bacterial illnesses and contagions to date. Thanks to the introduction of vaccines since the first uses of them in 1796 (Jenner’s smallpox vaccine), they have drastically reduced figures of disease worldwide, turning once lethal and life changing

Vaccines are modern medicine’s best way of combating the majority of viral and bacterial illnesses and contagions to date. Thanks to the introduction of vaccines since the first uses of them in 1796 (Jenner’s smallpox vaccine), they have drastically reduced figures of disease worldwide, turning once lethal and life changing conditions into minor annoyances; Some of these afflictions have even become nonexistent or even extinct in certain parts of the world outside of a controlled laboratory setting. With many advancements and overwhelming evidence proving their efficiency, it is clear that vaccines have become nothing less than a necessity for everyday healthcare in today’s world. <br/>The greatest contributor to the creation and evolution of vaccines throughout the years is by far the progress and work done in the field of molecular and cellular biology. These advancements have become the bedrock of modern vaccination, as shown by the differing types of vaccines and their methodology. The most common varieties of vaccines are include ‘dead’ or inactivated vaccines, one such example being the pertussis strain of vaccines, which have either dead or torn apart cells for the body to easily fight off, allowing the immune system to easily and quickly counter the illness; Additionally, there are also live attenuated vaccines (LAVs) in which a weaker version of the pathogen is introduced to the body to stimulate an immune response, or a recombinant mRNA vaccine where mRNA containing the coding for an antigen is presented for immunological response, the latter being what the current COVID-19 vaccines are based on. This is in part aided by the presence of immunological adjuvants, antigens and substances that the immune system can recognize, target, and remember for future infections. However, for more serious illnesses the body needs a bigger threat to analyze, which leads to live vaccines- instead of dead or individual components of a potential pathogen, a weakened version is created in the lab to allow the body to combat it. The idea behind this is the same, but to a larger degree so a more serious illness such as measles, mumps, and rubella (MMR) do not infect us.<br/>However, for the past couple of decades the public’s views on vaccination has greatly varied, with the rise of fear and disinformation leading those to believe that modern medicine is a threat in disguise. The largest of these arguments began in the late 90’s, when Dr. Andrew Wakefield published an article under the Lancet with false information connecting vaccinations to the occurrence of autism in younger children- a theory which has since then been proven incorrect numerous times over. Unfortunately, the rise of hysteria and paranoia in people, along with more misinformation from misleading sources, have strengthened the anti-vaccination cause and has made it into a serious threat to the health of those world-wide.<br/>The aim of this thesis is to provide an accurate and thorough analysis on these three themes- the history of vaccines, their inner workings and machinations in providing immune defenses for the body, and the current controversy of the anti-vaccination movement. Additionally, there will be two other sections going in-depth on two specific areas where vaccination is highly important; The spread and fear of the Human Immunodeficiency Virus (HIV) has been around for nearly four decades, so it begs the question: what makes this such a difficult virus, and how can a vaccine be created to combat it? Additionally, in the last year the world has encountered a new virus that has evolved into a global pandemic, SARS-COV 2. This new strain of coronavirus has shown itself to be highly contagious and rapidly mutating, and the race to quickly develop a vaccine to counteract it has been on-going since its first major infections in Wuhan, China. Overall, this thesis will go in-depth in providing the most accurate, up-to-date, and critical information regarding vaccinations today.

ContributorsKolb Celaya, Connor Emilio (Author) / Topal, Emel (Thesis director) / Huffman, Holly (Committee member) / College of Integrative Sciences and Arts (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132371-Thumbnail Image.png
Description
A comparison of the total phenolic content, total vitamin C, and concentration of arsenic were tested in leafy vegetables (basil and kale) grown in aeroponic systems and conventional agriculture soil acquired from local supermarkets. In general, the study shows that plants grown in aeroponic systems show comparable yield of Vitamin

A comparison of the total phenolic content, total vitamin C, and concentration of arsenic were tested in leafy vegetables (basil and kale) grown in aeroponic systems and conventional agriculture soil acquired from local supermarkets. In general, the study shows that plants grown in aeroponic systems show comparable yield of Vitamin C and phenolic content, with absence of significant amounts of arsenic in aeroponically grown samples compared to those grown conventionally in soil.
ContributorsCarlton, Christopher (Co-author) / Harper, William (Co-author) / Huffman, Holly (Thesis director) / MclLwraith, Heide (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132667-Thumbnail Image.png
Description
In recent years, experimental and theoretical evidence has pointed to the existence of biologically active proteins that either include unstructured regions or are entirely unstructured. Referred to as intrinsically disordered proteins (IDPs), they are now known to be involved in diverse functions, much as any folded protein. Mutations

In recent years, experimental and theoretical evidence has pointed to the existence of biologically active proteins that either include unstructured regions or are entirely unstructured. Referred to as intrinsically disordered proteins (IDPs), they are now known to be involved in diverse functions, much as any folded protein. Mutations in IDPs have been implicated in multiple neurodegenerative diseases. Considering the disordered nature of IDPs, there are limited structure features that can be used to quantify the disordered state. One such pair of variables are the radius of gyration (Rg) and the corresponding Flory’s scaling exponent, both of which characterize the dimension and size of the protein. It is generally understood that the sequence of an IDP affects its Rg and scaling exponent. Properties such as amino acid hydrophobicity and charge can play important roles in determining the Rg of an IDP, much as they affect the structure of a folded protein. However, it is nontrivial to directly predict Rg and scaling exponent from an IDP sequence. In this thesis, a coarse-grained model is used to simulate the Rg and scaling exponents of 10,000 randomly generated sequences mimicking the amino acid propensities of a typical IDP sequence. Such a database is then fed into an artificial neural network model to directly predict the scaling exponent from the sequence. The framework has not only made accurate and precise predictions (<1% error) in comparing to the simulation-obtained scaling exponent, but also suggest important sequence descriptors for such prediction. In addition, through varying the number of sequences for training the model, we suggest a minimum dataset of 100 sequences might be sufficient to achieve a 5% error of prediction, shedding light upon possible predictive models with only experimental inputs.
ContributorsBrown, Matthew D (Author) / Zheng, Wenwei (Thesis director) / Huffman, Holly (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132483-Thumbnail Image.png
Description
White-nose syndrome (WNS) is a fungal infection devastating bat populations throughout eastern North America. WNS is caused by a fungus, Pseudogymnoascus destructans (Pd), that invades the skin of hibernating bats. While there are a number of treatments being researched, there is currently no effective treatment for WNS that is deployed

White-nose syndrome (WNS) is a fungal infection devastating bat populations throughout eastern North America. WNS is caused by a fungus, Pseudogymnoascus destructans (Pd), that invades the skin of hibernating bats. While there are a number of treatments being researched, there is currently no effective treatment for WNS that is deployed in the field, except a few being tested on a limited scale. Bats have lowered immune function and response during hibernation, which may increase susceptibility to infection during the winter months. Antimicrobial peptides (AMPs) are a crucial component of the innate immune system and serve as barriers against infection. AMPs are constitutively expressed on skin and facilitate wound healing, stimulate other immune responses, and may also stay active on bat skin during hibernation. AMPs are expressed by all tissues, have direct killing abilities against microbes, and are a potential treatment for bats infected with Pd. In this investigation, the fungicidal activity of several readily available commercial AMPs were compared, and killing assay protocols previously investigated by Frasier and Lake were replicated to establish a control trial for use in future killing assays. Another aim of this investigation was to synthesize a bat-derived AMP for use in the killing assay. Sequences of bat-derived AMPs have been identified in bat skin samples obtained from a large geographic sampling of susceptible and resistant species. Contact was made with GenScript Inc., the company from which commercially available AMPs were purchased, to determine the characteristics of peptide sequences needed to synthesize an AMP for lab use. Based on recommendations from GenScript Inc., peptide sequences need to have a hydrophobicity of less than 50% and a sequence length of less than 50 amino acids. These criteria serve as a potential barrier because none of the known bat-derived sequences analyzed satisfy both of these requirements. The final aim of this study was to generate a conceptual model of the immune response molecules activated when bats are exposed to a fungal pathogen such as Pd. Overall, this work investigated sources of variability between trials of the killing assay, analyzed known bat-derived peptide sequences, and generated a conceptual model that will serve as a guideline for identification of immune response molecules on the skin of bats in future proteomics work.
ContributorsBarton, Madisen L (Author) / Moore, Marianne (Thesis director) / Penton, Christopher (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133090-Thumbnail Image.png
Description
Nutrition has been around for as long as human beings have resided on the planet, giving it one of the most impactful roles in history, particularly in medicine. Certain herbs or dietary restrictions could help individuals recover from illnesses—this form of healing has been passed down generations, which medical providers

Nutrition has been around for as long as human beings have resided on the planet, giving it one of the most impactful roles in history, particularly in medicine. Certain herbs or dietary restrictions could help individuals recover from illnesses—this form of healing has been passed down generations, which medical providers from all over the world take advantage of. Before the era of antibiotics and pharmaceutical companies, food was the medicine used to treat. As civilization has flourished and become progressive, it seems that certain qualities of the past have been forgotten, such as the power of diet. Medical providers like to push patients towards pharmaceutical intervention because of the financial profit that this method entails, which has been shown to backfire. These interventions are not solving the true problem, but only applying a short-term solution. Dietary restrictions as well as the increase in heart-healthy foods can entirely reverse these conditions in order to avoid the fatal effects they may have. With the increase in nutritional education amongst the population via medical providers, specifically primary care providers, patients are able to reverse the symptoms of effects of chronic cardiovascular disease amongst others.
ContributorsTarin, Marjan (Author) / Huffman, Holly (Thesis director) / Moore, Marianne (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133500-Thumbnail Image.png
Description
Across large areas of eastern and midwestern North America, a severe reduction in multiple populations of bat species has been observed as the result of the emerging fungal disease, white-nose syndrome (WNS). WNS is caused by a psychrophilic (i.e. cold loving) fungus, Pseudogymnoascus destructans (Pd), that invades the skin of

Across large areas of eastern and midwestern North America, a severe reduction in multiple populations of bat species has been observed as the result of the emerging fungal disease, white-nose syndrome (WNS). WNS is caused by a psychrophilic (i.e. cold loving) fungus, Pseudogymnoascus destructans (Pd), that invades the skin of bats during hibernation. Recent studies have shown that during hibernation, bats have decreased immune system activity which would suggest increased susceptibility to infection. Antimicrobial peptides (AMPs) are an important component of the innate immune system and are expressed constitutively within all tissues that serve as barriers against infection. Killing pathogens at the level of the skin could prevent the need for more complex immune responses likely inhibited during hibernation, and therefore AMPs could be critical in combating infection by Pd and reducing population loss of susceptible bat species. In this investigation, the fungicidal activity of commercially available AMPs derived from the skin of multiple taxa, including amphibians, catfish, and humans were compared in order to study immunity at the level of the skin. Additionally, our aim was to create optimal methods for a low-cost antimicrobial-assay protocol that would provide quantitative results. We found that killing abilities at various concentrations of dermaseptin S-1 against Ca ATCC 10231 were consistent with literature values, while our values for magainin 2 and parasin 1 were far from the values previously recorded by other studies. It is possible that some differences can be accounted for by the difference in antimicrobial assay procedures, but our findings suggest potential differences to the well-known killing abilities of certain peptides nonetheless. Overall, the protocol established for the antimicrobial assays using serial dilutions and Sabouraud Dextrose plates was successful.
ContributorsFrazier, Eric (Co-author) / Lake, Alexis M. (Co-author) / Moore, Marianne (Thesis director) / Penton, Christopher (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133503-Thumbnail Image.png
Description
Across large areas of eastern and midwestern North America, a severe reduction in multiple populations of bat species has been observed as the result of the emerging fungal disease, white-nose syndrome (WNS). WNS is caused by a psychrophilic (i.e. cold loving) fungus, Pseudogymnoascus destructans (Pd), that invades the skin of

Across large areas of eastern and midwestern North America, a severe reduction in multiple populations of bat species has been observed as the result of the emerging fungal disease, white-nose syndrome (WNS). WNS is caused by a psychrophilic (i.e. cold loving) fungus, Pseudogymnoascus destructans (Pd), that invades the skin of bats during hibernation. Recent studies have shown that during hibernation, bats have decreased immune system activity which would suggest increased susceptibility to infection. Antimicrobial peptides (AMPs) are an important component of the innate immune system and are expressed constitutively within all tissues that serve as barriers against infection. Killing pathogens at the level of the skin could prevent the need for more complex immune responses likely inhibited during hibernation, and therefore AMPs could be critical in combating infection by Pd and reducing population loss of susceptible bat species. In this investigation, the fungicidal activity of commercially available AMPs derived from the skin of multiple taxa, including amphibians, catfish, and humans were compared in order to study immunity at the level of the skin. Additionally, our aim was to create optimal methods for a low-cost antimicrobial-assay protocol that would provide quantitative results. We found that killing abilities at various concentrations of dermaseptin S-1 against Ca ATCC 10231 were consistent with literature values, while our values for magainin 2 and parasin 1 were far from the values previously recorded by other studies. It is possible that some differences can be accounted for by the difference in antimicrobial assay procedures, but our findings suggest potential differences to the well-known killing abilities of certain peptides nonetheless. Overall, the protocol established for the antimicrobial assays using serial dilutions and Sabouraud Dextrose plates was successful.
ContributorsLake, Alexis (Co-author) / Frazier, Eric (Co-author) / Moore, Marianne (Thesis director) / Penton, Christopher (Committee member) / W.P. Carey School of Business (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133861-Thumbnail Image.png
Description
Dental caries are considered the most common infectious diseases that impacts human populations worldwide. The human oral cavity is colonized by a wide range of microorganisms including viruses, protozoa, fungi, archaea and bacteria. Oral diseases begin with the development of dental plaque, a biofilm formed by the accumulation of bacteria.

Dental caries are considered the most common infectious diseases that impacts human populations worldwide. The human oral cavity is colonized by a wide range of microorganisms including viruses, protozoa, fungi, archaea and bacteria. Oral diseases begin with the development of dental plaque, a biofilm formed by the accumulation of bacteria. Of these bacteria, Streptococcus mutans has been identified as the leading cause of dental caries. Probiotics are described as live microorganisms which provide beneficial impacts to their host by improving the intestinal microbial balance. Studies have demonstrated that probiotic therapies may be suitable for decreasing the cariogenic potential of S. mutans as well as other cariogenic bacteria. In this study, it was hypothesized that probiotics would exhibit a significant effect on the population density of S. mutans within the oral cavity. Nine people selected in this study consumed Activia probiotic yogurt for a seven-day trial period. DNA was extracted from these swabs and analyzed by qPCR. The results showed the amount of S. mutans increased insignificantly (P>0.05), whereas the proportion of S. mutans in the entire community was insignificant (P>0.05). Individual subjects responded differently to treatment, indicating the influence of their preferential diet on S. mutans abundance. Studies conducted on the probiotic strains within the Activia yogurt were previously shown to be insufficient in antagonizing cariogenic bacteria, which attributes to these results.
ContributorsPortales, Lilia Katherine (Author) / Huffman, Holly (Thesis director) / Penton, Ryan (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05