Matching Items (43)
135881-Thumbnail Image.png
Description
Nutritional balance is a requirement for the survival of all species. This balance is important for complex eusocial organisms as it influences the growth and development of the colony. Leafcutter ants function as tri-trophic systems, harvesting mixed vegetation to cultivate a fungus garden that in return supplies the colony with

Nutritional balance is a requirement for the survival of all species. This balance is important for complex eusocial organisms as it influences the growth and development of the colony. Leafcutter ants function as tri-trophic systems, harvesting mixed vegetation to cultivate a fungus garden that in return supplies the colony with food. Examining how the colony deals with nutrient balance is of particular interest because this species forages to provide nutrients for the fungus. There seems to be a feedback system between the fungus and the workers that influences how much of a particular macronutrient should be collected. The objective of this thesis study was to examine the foraging behavior of the desert leaf cutter ant, Acromyrmex versicolor. This study asked how nutrition, in particular the ratio of carbohydrates to proteins, influences the foraging behavior of the colony. It was hypothesized that given a choice of high protein and high carbohydrate diets the leafcutters would forage towards a balance ratio. The results from this experiment showed that A. versicolor forage towards a target ratio of protein to carbohydrate to based diets. This p:c ratio was calculated to be 1:6.2; 1 gram of protein to 6.2 grams of carbohydrate. When colonies were restricted to the high carbohydrate diet, they increased food consumption, consistent with the expectation that they would forage to reach their protein nutrient requirement, however, they reduced foraging on that diet. This suggests that ants avoid overconsuming protein, even when doing so provided more optimal carbohydrate intake. From this study I concluded that nutritional balance is a foraging goal for ant societies, similar to organisms. These results also open the question of how nutrient regulation by leafcutter ants is regulated around their mutualist relationship with another organism, the fungus.
ContributorsFarris, Megan Alexandra (Author) / Fewell, Jennifer (Thesis director) / Harrison, Jon (Committee member) / Smith, Nate (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135604-Thumbnail Image.png
Description
Selenium, a group 16 metalloid on the periodic table, is a necessary mineral for many organisms. Trace amounts of selenium are essential for normal development, antioxidant protein function, enzyme function, and hormone regulation (Burden et al., 2016). However, when selenium is found in toxic amounts in organisms, it has been

Selenium, a group 16 metalloid on the periodic table, is a necessary mineral for many organisms. Trace amounts of selenium are essential for normal development, antioxidant protein function, enzyme function, and hormone regulation (Burden et al., 2016). However, when selenium is found in toxic amounts in organisms, it has been found to substitute for sulfur in proteins, which can be toxic to these animals, and cause oxidative stress (Quinn et al., 2007). Using the previous research done with acute exposure to organic and inorganic selenium compounds, we hypothesized that the inorganic sodium selenate would significantly decrease learning and memory recall for both chronic and acute exposure. We also hypothesized that the consumption of organic methylseleno-L-cysteine by honey bees would decrease learning and memory recall for both the chronic and acute exposure. We further hypothesized that protein carbonyl content would be increased due to oxidative damage caused by selenium in both the sodium selenate and the methylseleno-L-cysteine treatment groups, but that the inorganic selenium compound would increase the carbonyl content more than the methylseleno-L-cysteine. To run the experiments, three tents outside had two colonies in each tent. One tent contained the sodium selenate group, another had the sucrose control, and one contained the methylseleno-L-cysteine group. The treatment groups were fed selenium in their sucrose feeders. The first part of the experiment was training the bees by using proboscis extension response (PER) to teach them to extend their proboscis to the rewarded odor and not to the unrewarded odor. This was done by pairing the rewarded odor with a sucrose reward and not pairing it with the unrewarded odor. Then their short-term and long-term memory recall was tested. The second part of the experiment was checking for oxidative damage by measuring the protein carbonyl content in the bees. Three boxes were set up with the same three treatment groups as used in the tents. The treatment group bees were exposed to selenium in the sucrose feeders and in the pollen patties. After one week, the living bees were removed and frozen. They were then homogenized to extract protein. The first assay run was the protein content assay to establish a standard protein concentration for samples. Then a protein carbonyl assay was run, to determine the protein carbonyl content. Overall, the experiment found that exposure to selenium negatively impacted honey bees learning and memory recall significantly. Chronic exposure to the inorganic selenate reduced the bees' long-term memory abilities to differentiate between odors. With methylseleno-L-cysteine, it had no significant effect for the chronic exposure, but for the acute exposure, it had a significant impairment on their abilities to distinguish between the rewarded and unrewarded odors during conditioning. Our results showed that from our experiment there appeared to be no significant effect of selenium exposure on the increase of carbonylation content in the different treatment groups. This is most likely due to the fact the carbonyl content was not detectable because the protein concentration was low in the samples (approximately 3.5 mg/mL).
ContributorsWinski, Alexandra (Co-author) / Winski, Brandon (Co-author) / Smith, Brian (Thesis director) / Harrison, Jon (Committee member) / Burden, Christina (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
147633-Thumbnail Image.png
Description

All organisms perform best at a balanced point of intake where nutrients are ingested in specific amounts to confer optimal performance. However, when faced with limited nutrient availability, organisms are forced to make decisions which prioritize intake of certain macronutrients. While intake regulation has been more thoroughly studied in omnivores

All organisms perform best at a balanced point of intake where nutrients are ingested in specific amounts to confer optimal performance. However, when faced with limited nutrient availability, organisms are forced to make decisions which prioritize intake of certain macronutrients. While intake regulation has been more thoroughly studied in omnivores and carnivores, no research exists regarding lipid regulation in generalist herbivores. Traditionally, proteins and carbohydrates were thought to be the most important macronutrient for herbivore intake; however the large differences in lipid nutritional content between different plant species offers lots of potential for regulation of an important macronutrient. We studied whether generalist herbivores can regulate lipid intake, using the migratory locust (Locusta migratoria). Though herbivore protein and carbohydrate intake is well studied, less research studies regulation of lipid intake. We tested this by offering choice diets of varying carbohydrate and lipid content makeup and measuring consumption of each diet choice to determine overall carbohydrate and lipid intake. Four different lipid sources were used in order to control for taste or texture related confounds; canola oil, sunflower oil, grapeseed oil, and a lab designed synthetic oil based on the four most abundant fatty acids in common plant oils. On three out of four diet sources, groups evidences strong regulation of narrow intake target, with little disparity in overall intake of carbohydrate and lipid content between various choice diet treatments. Groups feeding on canola oil and sunflower oil based diets displayed the best regulation based on their having small disparities in intake between treatments, while those feeding on grapeseed oil based diets displayed wide variation in feeding behavior between treatments. Groups feeding on the synthetic oil based diet choice unexpectedly consumed much more carbohydrates than lipids when compared to all other groups. In conclusion, generalist herbivores are capable of regulating lipid intake.

ContributorsChahal, Aunmolpreet Singh (Author) / Harrison, Jon (Thesis director) / Talal, Stav (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131323-Thumbnail Image.png
Description
Insects are small creatures highly susceptible to water loss. A major factor in the prevention of water loss through an insect’s cuticle are their cuticular hydrocarbons (CHC), a lipid layer consisting mostly of long-chain hydrocarbons. CHCs consist of different molecules called alkanes, alkenes, and methyl branched hydrocarbons which all have

Insects are small creatures highly susceptible to water loss. A major factor in the prevention of water loss through an insect’s cuticle are their cuticular hydrocarbons (CHC), a lipid layer consisting mostly of long-chain hydrocarbons. CHCs consist of different molecules called alkanes, alkenes, and methyl branched hydrocarbons which all have varying levels of hydrophobicity. Ants are a massively abundant family of insects with important roles in the ecosystem that also utilize CHCs. Camponotus floridanus isare athe native ant species of the Florida Keys which areis known to have variable environmental temperature. Being exposed to temperatures as high as 35 °C, these ants are expected to have mechanisms that allow them to adapt to their environment. It was hypothesized that CHCs may change in concentration or composition as a means to combat the changes in cuticular permeability due to the variable temperatures that the ants experience. We therefore used C. floridanus worker ants to learn more about CHC plasticity in insects when exposed to elevated temperatures. We found four CHC componentspeaks that showed a statistically significant increase in concentration when comparing the control to treatment colonies: 3,7 dimethyl C31, an underdetermined methyl branched C31, 3,7,11 trimethyl C31, and an undetermined tetramethylbranched C31. These significant changes in concentration occurred on longer chain hydrocarbons. Under further examination, it was found that there was a strong positive correlation between elution time and the differences in medians of peak area between control and treatment colonies. This shows that there was a shift in the CHC profile resulting in an increased concentration of longer chained methyl-branched hydrocarbons. It also suggests that branched hydrocarbons also play some role in the water proofing mechanism of C. floridanus.
ContributorsOn, Thomas (Co-author) / On, Tyler (Co-author) / Liebig, Juergen (Thesis director) / Harrison, Jon (Committee member) / Murdock, Tyler (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131604-Thumbnail Image.png
Description
Hypoxia-responses help coordinate the growth of oxygen-transporting tissues with the growth of other tissues during development. In Drosophila, hypoxia strongly affects development with flies being reared in a low oxygen environment showing smaller body sizes and diminished tracheal growth. The primary regulator of cellular hypoxic-responses is the hypoxia-inducible factor (HIF),

Hypoxia-responses help coordinate the growth of oxygen-transporting tissues with the growth of other tissues during development. In Drosophila, hypoxia strongly affects development with flies being reared in a low oxygen environment showing smaller body sizes and diminished tracheal growth. The primary regulator of cellular hypoxic-responses is the hypoxia-inducible factor (HIF), and under normoxic conditions, HIF-alpha is hydroxylated by prolyl hydroxylase domain (PHD) on a proline residue inside the alpha leading to the proteins proteasome degradation downstream. However, in response to reduced oxygen, cells accumulate HIF- alpha, which then joins with the constituent HIF-beta in the cytosol, forming a HIF- alpha/beta heterodimer. Which, in turn, enters the nucleus and binds to hypoxic response elements, activating the hypoxic response genes. Hyperoxia has recently been shown to stimulates metabolic rates only at the last stage Drosophila's larval development (L3), indicating oxygen limitation occurs towards the end of development. Green fluorescent protein (GFP) was added to the oxygen-dependent domain of Drosophila HIF- Alpha (Sima) and a monomeric red fluorescent protein with a nuclear localization signal (mRFP-nls) was added to a protein under the same ubiquitin-69E promoter but is not affected by changing O2 levels. Using a Leica SP5 AOBS Spectral Confocal, third instar larvae were analyzed at the cellular level with attention focused on HIF- signaling in the central nervous system (CNS). L3 Drosophila were divided into groups of 0-12h, 12-24h, 24-48h, and 48-60h corresponding to their development. In each group, flies were either treated for 10-12 hours in 5% O2 or were left normoxic before fixation. What was overwhelmingly found is that HIF-signaling was most prominent during their early development (0-12h), with a significant decline as age increased (P=<0.001). There was also an observed hypoxic effect as animals treated in lower oxygen concentrations had significantly higher HIF signaling (P=<0.001). However, this effect still declines as larvae continued developing. This data supports the idea that internal hypoxia does not become severe during late third instar growth but may occur during the actual molt of the flies.
ContributorsWerkhoven, Simon (Author) / Harrison, Jon (Thesis director) / VandenBrooks, John (Committee member) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133262-Thumbnail Image.png
Description
In order to survive, species must regulate their intake of nutrients. In desert leafcutter ant colonies, acquisition of nutrients is not only important for maintaining the health of the colony, but also for the survival of a fungus which the ants cultivate and then consume. This multi-trophic, symbiotic relationship is

In order to survive, species must regulate their intake of nutrients. In desert leafcutter ant colonies, acquisition of nutrients is not only important for maintaining the health of the colony, but also for the survival of a fungus which the ants cultivate and then consume. This multi-trophic, symbiotic relationship is relatively unique to leafcutter ants and interesting to researchers due to the complexity of how the individual foragers supply nutrients to both the colony and the fungus. The objective of this experiment is to study foraging rates and variation in macronutrient preference among foragers from the same colony of the desert leafcutter ant Acromyrmex versicolor. This study asks if individual foragers vary in their preference of protein to carbohydrate ratios when compared to the overall nutrient content of the colony, and how do these individuals respond as the nutrient content of the available diets increasingly deviates from the previously determined nutritional intake target ratio between 1 Protein:6.3 Carbohydrates to 1 Protein:7.5 Carbohydrates. It was hypothesized that foragers express individualized nutritional preferences that in aggregate balance colony macronutrient consumption, and the number of individuals collecting the diets would decrease as the available nutritional diets deviated away from the colony-level intake target of approximately 1P:7C. The results show trends that support the hypothesis that the number of foraging instances and the number of foragers who exhibit individualized preference towards a certain protein to carbohydrate ratio is highest when the colony is presented with diets that are closest to the colony nutritional intake target.
ContributorsGlovsky, Taylor Ella (Author) / Fewell, Jennifer (Thesis director) / Harrison, Jon (Committee member) / School of Life Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134024-Thumbnail Image.png
Description
Honeybees (Apis mellifera) are pollinators that face multiple challenges during foraging such as fungicides applied to floral sources. Fungicides are chemicals used to inhibit key fungal mechanisms like metabolism, but their effects remain relatively unknown in bees. In addition, studying the maturing bee can help us identify demographics that are

Honeybees (Apis mellifera) are pollinators that face multiple challenges during foraging such as fungicides applied to floral sources. Fungicides are chemicals used to inhibit key fungal mechanisms like metabolism, but their effects remain relatively unknown in bees. In addition, studying the maturing bee can help us identify demographics that are more vulnerable to toxic materials like fungicides. The purpose of this study is test whether maturation and the fungicide Pristine influence the permeability of the blood-brain barrier. Specifically, we use a transportable dye to test how blood brain barrier transporter function responds to toxic insult and how it changes with age. Oral ingestion of Pristine by female workers did not have an effect on blood brain barrier permeability which suggests Pristine may have no or longer term consequences in the bee. However, blood brain barrier permeability changed with the bee's age which could be explained by the regulation of blood brain barrier transporters during natural transitions in hive task or the presence of hemolymph protein filtration
ContributorsPatel, Aamir S. (Author) / Amdam, Gro (Thesis director) / Harrison, Jon (Committee member) / Ozturk, Cahit (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
168531-Thumbnail Image.png
Description
Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique

Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique opportunities to illuminate drivers of social evolution beyond indirect fitness, especially ecological factors. This dissertation combines behavioral, physiological, and ecological approaches to explore the conditions that favor group formation among non-kin, using as a model the facultatively social carpenter bee, Xylocopa sonorina. Using behavioral and genetic techniques, I found that nestmates in this species are often unrelated, and that non-kin groups form following extensive inter-nest migration.Group living may arise as a strategy to mitigate constraints on available breeding space. To test the hypothesis that nest construction is prohibitively costly for carpenter bees, I measured metabolic rates of excavating bees and used imaging techniques to quantify nest volumes. From these measurements, I found that nest construction is highly energetically costly, and that bees who inherit nests through social queuing experience substantial energetic savings. These costs are exacerbated by limitations on the reuse of existing nests. Using repeated CT scans of nesting logs, I examined changes in nest architecture over time and found that repeatedly inherited tunnels become indefensible to intruders, and are subsequently abandoned. Together, these factors underlie intense competition over available breeding space. The imaging analysis of nesting logs additionally revealed strong seasonal effects on social strategy, with social nesting dominating during winter. To test the hypothesis that winter social nesting arises from intrinsic physiological advantages of grouping, I experimentally manipulated social strategy in overwintering bees. I found that social bees conserve heat and body mass better than solitary bees, suggesting fitness benefits to grouping in cold, resource-scarce conditions. Together, these results suggest that grouping in X. sonorina arises from dynamic strategies to maximize direct fitness in response to harsh and/or competitive conditions. These studies provide empirical insights into the ecological conditions that favor non-kin grouping, and emphasize the importance of ecology in shaping sociality at its evolutionary origins.
ContributorsOstwald, Madeleine (Author) / Fewell, Jennifer H (Thesis advisor) / Amdam, Gro (Committee member) / Harrison, Jon (Committee member) / Pratt, Stephen (Committee member) / Kapheim, Karen (Committee member) / Arizona State University (Publisher)
Created2022
190822-Thumbnail Image.png
Description
This research focuses on the intricate dynamical systems of eusocial insects, particularly ants, and honey bees, known for their highly organized colonies and cooperative behaviors. Research on eusocial insects contributes to understanding of animal and social behavior and promises to help agriculture and have huge economic impacts. Collaborating closely with

This research focuses on the intricate dynamical systems of eusocial insects, particularly ants, and honey bees, known for their highly organized colonies and cooperative behaviors. Research on eusocial insects contributes to understanding of animal and social behavior and promises to help agriculture and have huge economic impacts. Collaborating closely with ecologists, I construct diverse mathematical models tailored to different environmental contexts. These models encompass individual stochastic (Agent-based model), Ordinary Differential Equation (ODE), non-autonomous, and Delay Differential Equation (DDE) models, rigorously validated with experimental data and statistical methods. Employing dynamical theory, bifurcation analysis, and numerical simulations, I gain deeper insights into the adaptive behaviors exhibited by these insects at both colony and individual levels. Our investigation addresses pivotal questions: 1) What mechanisms underlie spatial heterogeneity within social insect colonies, influencing the spread of information and pathogens through their intricate social networks?2) How can I develop accurate mathematical models incorporating age structures, particularly for species like honeybees, utilizing delayed differential equations? 3) What is the influence of seasonality on honeybee population dynamics in the presence of parasites, as explored through non-autonomous equations? 4) How do pesticides impact honeybee population dynamics, considering delayed equations and seasonality? Key findings highlight:1) The spatial distribution within colonies significantly shapes contact dynamics, thereby influencing the dissemination of information and the allocation of tasks. 2) Accurate modeling of honeybee populations necessitates the incorporation of age structure, as well as careful consideration of seasonal variations. 3) Seasonal fluctuations in egg-laying rates exert varying effects on the survival of honeybee colonies. 4) Pesticides wield a substantial influence on adult bee mortality rates and the consumption ratios of pollen. This research not only unveils the intricate interplay between intrinsic and environmental factors affecting social insects but also provides broader insights into social behavior and the potential ramifications of climate change.
ContributorsChen, Jun (Author) / Kang, Yun (Thesis advisor) / DeGrandi-Hoffman, Gloria (Committee member) / Fewell, Jeniffer (Committee member) / Harrison, Jon (Committee member) / Towers, Sherry (Committee member) / Arizona State University (Publisher)
Created2023
Description

Visual presentation of information is one method of learning that has the ability to enhance STEM learning compared to learning solely through text. Educational psychology research is ongoing in the STEM field for how students can learn better through visual representations in their course material. The goal of this study

Visual presentation of information is one method of learning that has the ability to enhance STEM learning compared to learning solely through text. Educational psychology research is ongoing in the STEM field for how students can learn better through visual representations in their course material. The goal of this study was to assess student responses to visual mini-lessons related to course content in the cardiovascular unit in Animal Physiology (BIO360) at Arizona State University. Study participants completed a series of eight mini-lessons and a survey on their experience with the visual lessons. The results of the survey identify increased desire for visual learning materials in STEM courses. The study participants reported that they felt more visual aids in their STEM courses would increase their understanding of course content and that their classroom performance would improve.

ContributorsRauch, Grace (Author) / Hartwell, Leland (Thesis director) / Harrison, Jon (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor)
Created2022-12