Matching Items (109)
129443-Thumbnail Image.png
Description

Allowing resource users to communicate in behavioural experiments on commons dilemmas increases the level of cooperation. In actual common pool resource dilemmas in the real world, communication is costly, which is an important detail missing from most typical experiments. We conducted experiments where participants must give up harvesting opportunities to

Allowing resource users to communicate in behavioural experiments on commons dilemmas increases the level of cooperation. In actual common pool resource dilemmas in the real world, communication is costly, which is an important detail missing from most typical experiments. We conducted experiments where participants must give up harvesting opportunities to communicate. The constrained communication treatment is compared with the effect of limited information about the state of the resource and the actions of the other participants. We find that despite making communication costly, performance of groups improves in all treatments with communication. We also find that constraining communication has a more significant effect than limiting information on the performance of groups.

ContributorsJanssen, Marco (Author) / Tyson, Madeline (Author) / Lee, Allen (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
129207-Thumbnail Image.png
Description

Urbanization continues to be a transformative process globally, affecting ecosystem integrity and the health and well being of people around the world. Although cities tend to be centers for both the production and consumption of goods and services that degrade natural environments, there is also evidence that urban ecosystems can

Urbanization continues to be a transformative process globally, affecting ecosystem integrity and the health and well being of people around the world. Although cities tend to be centers for both the production and consumption of goods and services that degrade natural environments, there is also evidence that urban ecosystems can play a positive role in sustainability efforts. Despite the fact that most of the urbanization is now occurring in the developing countries of the Global South, much of what we know about urban ecosystems has been developed from studying cities in the United States and across Europe. We propose a conceptual framework to broaden the development of urban ecological research and its application to sustainability. Our framework describes four key contemporary urban features that should be accounted for in any attempt to build a unified theory of cities that contributes to urban sustainability efforts. We evaluated a range of examples from cities around the world, highlighting how urban areas are complex, connected, diffuse and diverse and what these interconnected features mean for the study of urban ecosystems and sustainability.

ContributorsMcHale, Melissa R. (Author) / Pickett, Steward T. A. (Author) / Barbosa, Olga (Author) / Bunn, David N. (Author) / Cadenasso, Mary L. (Author) / Childers, Dan (Author) / Gartin, Meredith (Author) / Hess, George R. (Author) / Iwaniec, David (Author) / McPhearson, Timon (Author) / Peterson, M. Nils (Author) / Poole, Alexandria K. (Author) / Rivers, Louie (Author) / Shutters, Shade (Author) / Zhou, Weiqi (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2015-05-01
129219-Thumbnail Image.png
Description

Most studies on the response of socioeconomic systems to a sudden shift focus on long-term equilibria or end points. Such narrow focus forgoes many valuable insights. Here we examine the transient dynamics of regime shift on a divided population, exemplified by societies divided ideologically, politically, economically, or technologically. Replicator dynamics

Most studies on the response of socioeconomic systems to a sudden shift focus on long-term equilibria or end points. Such narrow focus forgoes many valuable insights. Here we examine the transient dynamics of regime shift on a divided population, exemplified by societies divided ideologically, politically, economically, or technologically. Replicator dynamics is used to investigate the complex transient dynamics of the population response. Though simple, our modeling approach exhibits a surprisingly rich and diverse array of dynamics. Our results highlight the critical roles played by diversity in strategies and the magnitude of the shift. Importantly, it allows for a variety of strategies to arise organically as an integral part of the transient dynamics-as opposed to an independent process-of population response to a regime shift, providing a link between the population's past and future diversity patterns. Several combinations of different populations' strategy distributions and shifts were systematically investigated. Such rich dynamics highlight the challenges of anticipating the response of a divided population to a change. The findings in this paper can potentially improve our understanding of a wide range of socio-ecological and technological transitions.

Created2015-07-10
128778-Thumbnail Image.png
Description

Online communities are becoming increasingly important as platforms for large-scale human cooperation. These communities allow users seeking and sharing professional skills to solve problems collaboratively. To investigate how users cooperate to complete a large number of knowledge-producing tasks, we analyze Stack Exchange, one of the largest question and answer systems

Online communities are becoming increasingly important as platforms for large-scale human cooperation. These communities allow users seeking and sharing professional skills to solve problems collaboratively. To investigate how users cooperate to complete a large number of knowledge-producing tasks, we analyze Stack Exchange, one of the largest question and answer systems in the world. We construct attention networks to model the growth of 110 communities in the Stack Exchange system and quantify individual answering strategies using the linking dynamics on attention networks. We identify two answering strategies. Strategy A aims at performing maintenance by doing simple tasks, whereas strategy B aims at investing time in doing challenging tasks. Both strategies are important: empirical evidence shows that strategy A decreases the median waiting time for answers and strategy B increases the acceptance rate of answers. In investigating the strategic persistence of users, we find that users tends to stick on the same strategy over time in a community, but switch from one strategy to the other across communities. This finding reveals the different sets of knowledge and skills between users. A balance between the population of users taking A and B strategies that approximates 2:1, is found to be optimal to the sustainable growth of communities.

ContributorsWu, Lingfei (Author) / Baggio, Jacopo (Author) / Janssen, Marco (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2016-03-02
128689-Thumbnail Image.png
Description

Educational interventions are a promising way to shift individual behaviors towards Sustainability. Yet, as this research confirms, the standard fare of education, declarative knowledge, does not work. This study statistically analyzes the impact of an intervention designed and implemented in Mexico using the Educating for Sustainability (EfS) framework which focuses

Educational interventions are a promising way to shift individual behaviors towards Sustainability. Yet, as this research confirms, the standard fare of education, declarative knowledge, does not work. This study statistically analyzes the impact of an intervention designed and implemented in Mexico using the Educating for Sustainability (EfS) framework which focuses on imparting procedural and subjective knowledge about waste through innovative pedagogy. Using data from three different rounds of surveys we were able to confirm (1) the importance of subjective and procedural knowledge for Sustainable behavior in a new context; (2) the effectiveness of the EfS framework and (3) the importance of changing subjective knowledge for changing behavior. While the impact was significant in the short term, one year later most if not all of those gains had evaporated. Interventions targeted at subjective knowledge will work, but more research is needed on how to make behavior change for Sustainability durable.

Created2016-12-24
128940-Thumbnail Image.png
Description

International trade networks are manifestations of a complex combination of diverse underlying factors, both natural and social. Here we apply social network analytics to the international trade network of agricultural products to better understand the nature of this network and its relation to patterns of international development. Using a network

International trade networks are manifestations of a complex combination of diverse underlying factors, both natural and social. Here we apply social network analytics to the international trade network of agricultural products to better understand the nature of this network and its relation to patterns of international development. Using a network tool known as triadic analysis we develop triad significance profiles for a series of agricultural commodities traded among countries. Results reveal a novel network “superfamily” combining properties of biological information processing networks and human social networks. To better understand this unique network signature, we examine in more detail the degree and triadic distributions within the trade network by country and commodity. Our results show that countries fall into two very distinct classes based on their triadic frequencies. Roughly 165 countries fall into one class while 18, all highly isolated with respect to international agricultural trade, fall into the other. Only Vietnam stands out as a unique case. Finally, we show that as a country becomes less isolated with respect to number of trading partners, the country's triadic signature follows a predictable trajectory that may correspond to a trajectory of development.

Created2012-07-02
Description

On-going efforts to understand the dynamics of coupled social-ecological (or more broadly, coupled infrastructure) systems and common pool resources have led to the generation of numerous datasets based on a large number of case studies. This data has facilitated the identification of important factors and fundamental principles which increase our

On-going efforts to understand the dynamics of coupled social-ecological (or more broadly, coupled infrastructure) systems and common pool resources have led to the generation of numerous datasets based on a large number of case studies. This data has facilitated the identification of important factors and fundamental principles which increase our understanding of such complex systems. However, the data at our disposal are often not easily comparable, have limited scope and scale, and are based on disparate underlying frameworks inhibiting synthesis, meta-analysis, and the validation of findings. Research efforts are further hampered when case inclusion criteria, variable definitions, coding schema, and inter-coder reliability testing are not made explicit in the presentation of research and shared among the research community. This paper first outlines challenges experienced by researchers engaged in a large-scale coding project; then highlights valuable lessons learned; and finally discusses opportunities for further research on comparative case study analysis focusing on social-ecological systems and common pool resources. Includes supplemental materials and appendices published in the International Journal of the Commons 2016 Special Issue. Volume 10 - Issue 2 - 2016.

ContributorsRatajczyk, Elicia (Author) / Brady, Ute (Author) / Baggio, Jacopo (Author) / Barnett, Allain J. (Author) / Perez Ibarra, Irene (Author) / Rollins, Nathan (Author) / Rubinos, Cathy (Author) / Shin, Hoon Cheol (Author) / Yu, David (Author) / Aggarwal, Rimjhim (Author) / Anderies, John (Author) / Janssen, Marco (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2016-09-09
Description

Governing common pool resources (CPR) in the face of disturbances such as globalization and climate change is challenging. The outcome of any CPR governance regime is the influenced by local combinations of social, institutional, and biophysical factors, as well as cross-scale interdependencies. In this study, we take a step towards

Governing common pool resources (CPR) in the face of disturbances such as globalization and climate change is challenging. The outcome of any CPR governance regime is the influenced by local combinations of social, institutional, and biophysical factors, as well as cross-scale interdependencies. In this study, we take a step towards understanding multiple-causation of CPR outcomes by analyzing 1) the co-occurrence of Design Principles (DP) by activity (irrigation, fishery and forestry), and 2) the combination(s) of DPs leading to social and ecological success. We analyzed 69 cases pertaining to three different activities: irrigation, fishery, and forestry. We find that the importance of the design principles is dependent upon the natural and hard human made infrastructure (i.e. canals, equipment, vessels etc.). For example, clearly defined social boundaries are important when the natural infrastructure is highly mobile (i.e. tuna fish), while monitoring is more important when the natural infrastructure is more static (i.e. forests or water contained within an irrigation system). However, we also find that congruence between local conditions and rules and proportionality between investment and extraction are key for CPR success independent from the natural and human hard made infrastructure. We further provide new visualization techniques for co-occurrence patterns and add to qualitative comparative analysis by introducing a reliability metric to deal with a large meta-analysis dataset on secondary data where information is missing or uncertain.

Includes supplemental materials and appendices publications in International Journal of the Commons 2016 Special Issue. Volume 10 - Issue 2 - 2016

ContributorsBaggio, Jacopo (Author) / Barnett, Alain J. (Author) / Perez, Irene (Author) / Brady, Ute (Author) / Ratajczyk, Elicia (Author) / Rollins, Nathan (Author) / Rubinos, Cathy (Author) / Shin, Hoon Cheol (Author) / Yu, David (Author) / Aggarwal, Rimjhim (Author) / Anderies, John (Author) / Janssen, Marco (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2016-09-09
129119-Thumbnail Image.png
Description

Cities around the world are facing an ever-increasing variety of challenges that seem to make more sustainable urban futures elusive. Many of these challenges are being driven by, and exacerbated by, increases in urban populations and climate change. Novel solutions are needed today if our cities are to have any

Cities around the world are facing an ever-increasing variety of challenges that seem to make more sustainable urban futures elusive. Many of these challenges are being driven by, and exacerbated by, increases in urban populations and climate change. Novel solutions are needed today if our cities are to have any hope of more sustainable and resilient futures. Because most of the environmental impacts of any project are manifest at the point of design, we posit that this is where a real difference in urban development can be made. To this end, we present a transformative model that merges urban design and ecology into an inclusive, creative, knowledge-to-action process. This design-ecology nexus—an ecology for cities—will redefine both the process and its products. In this paper we: (1) summarize the relationships among design, infrastructure, and urban development, emphasizing the importance of joining the three to achieve urban climate resilience and enhance sustainability; (2) discuss how urban ecology can move from an ecology of cities to an ecology for cities based on a knowledge-to-action agenda; (3) detail our model for a transformational urban design-ecology nexus, and; (4) demonstrate the efficacy of our model with several case studies.

Created2014-11-30
129127-Thumbnail Image.png
Description

The purpose of applying social-ecological resilience thinking to food systems is twofold: First, to define those factors that help achieve a state in which food security for all and at all scales is possible. Second, to provide insights into how to maintain the system in this desirable regime. However, the

The purpose of applying social-ecological resilience thinking to food systems is twofold: First, to define those factors that help achieve a state in which food security for all and at all scales is possible. Second, to provide insights into how to maintain the system in this desirable regime. However, the resilience of food systems is distinct from the broader conceptualizations of resilience in social-ecological systems because of the fundamentally normative nature of food systems: humans need food to survive, and thus system stability is typically a primary policy objective for food system management. With that being said, society also needs food systems that can intensify sustainably i.e., feed everybody equitably, provide livelihoods and avoid environmental degradation while responding flexibly to shocks and uncertainty. Today’s failure in meeting food security objectives can be interpreted as the lack of current governance arrangements to consider the full and differential dimensions of food system functions – economic, ecological and social – at appropriate scales: in other words, the multifunctionality of food.

We focus on functional and response diversity as two key attributes of resilient, multifunctional food systems; respectively, the number of different functional groups and the diversity of types of responses to disturbances within a functional group. Achieving food security will require functional redundancy and enhanced response diversity, creating multiple avenues to fulfill all food system objectives. We use the 2013-15 drought in California to unpack the potential differences between managing for a single function – economic profit – and multiple functions. Our analysis emphasizes how the evolution of the Californian food system has reduced functional and response diversity and created vulnerabilities. Managing for the resilience of food systems will require a shift in priorities from profit maximization to the management for all functions that create full food security at multiple scales.

Created2015