Matching Items (82)
189340-Thumbnail Image.png
Description
As air quality standards become more stringent to combat poor air quality, there is a greater need for more effective pollutant control measures and increased air monitoring network coverage. Polluted air, in the form of aerosols and gases, can impact respiratory and cardiovascular health, visibility, the climate, and material weathering.

As air quality standards become more stringent to combat poor air quality, there is a greater need for more effective pollutant control measures and increased air monitoring network coverage. Polluted air, in the form of aerosols and gases, can impact respiratory and cardiovascular health, visibility, the climate, and material weathering. This work demonstrates how traditional networks can be used to study generational events, how these networks can be supplemented with low-cost sensors, and the effectiveness of several control measures. First, an existing network was used to study the effect of COVID-19 travel restrictions on air quality in Maricopa County, Arizona, which would not have been possible without the historical record that a traditional network provides. Although this study determined that decreases in CO and NO2 were not unique to the travel restrictions, it was limited to only three locations due to network sparseness. The second part of this work expanded the traditional NO2 monitoring network using low-cost sensors, that were first collocated with a reference monitor to evaluate their performance and establish a robust calibration. The sensors were then deployed to the field to varying results; their calibration was further improved by cycling the sensors between deployment and reference locations throughout the summer. This calibrated NO2 data, along with volatile organic compound data, were combined to enhance the understanding of ozone formation in Maricopa County, especially during wildfire season. In addition to being in non-attainment for ozone standards, Maricopa County fails to meet particulate matter under 10 μm (PM10) standards. A large portion of PM10 emissions is attributed to fugitive dust that is either windblown or kicked up by vehicles. The third part of this work demonstrated that Enzyme Induced Carbonate Precipitation (EICP) treatments aggregate soil particles and prevent fugitive dust emissions. The final part of the work examined tire wear PM10 emissions, as vehicles are another significant contributor to PM10. Observations showed a decrease in tire wear PM10 during winter with little change when varying the highway surface type.
ContributorsMiech, Jason Andrew (Author) / Herckes, Pierre (Thesis advisor) / Fraser, Matthew P (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2023
189350-Thumbnail Image.png
Description
The prevalence and unique properties of airborne nanoparticles have raised concerns regarding their potential adverse health effects. Despite their significance, the understanding of nanoparticle generation, transport, and exposure remains incomplete. This study first aimed to assess nanoparticle exposure in indoor workplace environments, in the semiconductor manufacturing industry. On-site observations during

The prevalence and unique properties of airborne nanoparticles have raised concerns regarding their potential adverse health effects. Despite their significance, the understanding of nanoparticle generation, transport, and exposure remains incomplete. This study first aimed to assess nanoparticle exposure in indoor workplace environments, in the semiconductor manufacturing industry. On-site observations during tool preventive maintenance revealed a significant release of particles smaller than 30 nm, which subsequent instrumental analysis confirmed as predominantly composed of transition metals. Although the measured mass concentration levels did not exceed current federal limits, it prompted concerns regarding how well filter-based air sampling methods would capture the particles for exposure assessment and how well common personal protective equipment would protect from exposure. To address these concerns, this study evaluated the capture efficiency of filters and masks. When challenged by aerosolized engineered nanomaterials, common filters used in industrial hygiene sampling exhibited capture efficiencies of over 60%. Filtering Facepiece Respirators, such as the N95 mask, exhibited a capture efficiency of over 98%. In contrast, simple surgical masks showed a capture efficiency of approximately 70%. The experiments showed that face velocity and ambient humidity influence capture performance and mostly identified the critical role of mask and particle surface charge in capturing nanoparticles. Masks with higher surface potential exhibited higher capture efficiency towards nanoparticles. Eliminating their surface charge resulted in a significantly diminished capture efficiency, up to 43%. Finally, this study characterized outdoor nanoparticle concentrations in the Phoenix metropolitan area, revealing typical concentrations on the order of 10^4 #/cm3 consistent with other urban environments. During the North American monsoon season, in dust storms, with elevated number concentrations of large particles, particularly in the size range of 1-10 μm, the number concentration of nanoparticles in the size range of 30-100 nm was substantially lower by approximately 55%. These findings provide valuable insights for future assessments of nanoparticle exposure risks and filter capture mechanisms associated with airborne nanoparticles.
ContributorsZhang, Zhaobo (Author) / Herckes, Pierre (Thesis advisor) / Westerhoff, Paul (Committee member) / Shock, Everett (Committee member) / Fraser, Matthew (Committee member) / Arizona State University (Publisher)
Created2023
171365-Thumbnail Image.png
Description
Scientists are entrusted with developing novel molecular strategies for effective prophylactic and therapeutic interventions. Antivirals are indispensable tools that can be targeted at viral domains directly or at cellular domains indirectly to obstruct viral infections and reduce pathogenicity. Despite their transformative potential in healthcare, to date, antivirals have been clinically

Scientists are entrusted with developing novel molecular strategies for effective prophylactic and therapeutic interventions. Antivirals are indispensable tools that can be targeted at viral domains directly or at cellular domains indirectly to obstruct viral infections and reduce pathogenicity. Despite their transformative potential in healthcare, to date, antivirals have been clinically approved to treat only 10 out of the greater than 200 known pathogenic human viruses. Additionally, as obligate intracellular parasites, many virus functions are intimately coupled with host cellular processes. As such, the development of a clinically relevant antiviral is challenged by the limited number of clear targets per virus and necessitates an extensive insight into these molecular processes. Compounding this challenge, many viral pathogens have evolved to evade effective antivirals. Therefore, a means to develop virus- or strain-specific antivirals without detailed insight into each idiosyncratic biochemical mechanism may aid in the development of antivirals against a larger swath of pathogens. Such an approach will tremendously benefit from having the specific molecular recognition of viral species as the lowest barrier. Here, I modify a nanobody (anti-green fluorescent protein) that specifically recognizes non-essential epitopes (glycoprotein M-pHluorin chimera) presented on the extra virion surface of a virus (Pseudorabies virus strain 486). The nanobody switches from having no inhibitory properties (tested up to 50 μM) to ∼3 nM IC50 in in vitro infectivity assays using porcine kidney (PK15) cells. The nanobody modifications use highly reliable bioconjugation to a three-dimensional wireframe deoxyribonucleic acid (DNA) origami scaffold. Mechanistic studies suggest that inhibition is mediated by the DNA origami scaffold bound to the virus particle, which obstructs the internalization of the viruses into cells, and that inhibition is enhanced by avidity resulting from multivalent virus and scaffold interactions. The assembled nanostructures demonstrate negligible cytotoxicity (<10 nM) and sufficient stability, further supporting their therapeutic potential. If translatable to other viral species and epitopes, this approach may open a new strategy that leverages existing infrastructures – monoclonal antibody development, phage display, and in vitro evolution - for rapidly developing novel antivirals in vivo.
ContributorsPradhan, Swechchha (Author) / Hariadi, Rizal (Thesis advisor) / Hogue, Ian (Committee member) / Varsani, Arvind (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2022
168758-Thumbnail Image.png
Description
Lithium (Li) is a trace element in kerogen, but the content and isotopic distribution (δ7Li) in kerogen has not previously been quantified. Furthermore, kerogen has been overlooked as a potential source of Li to sedimentary porefluids and buried sediments. Thus, knowing the content and isotopic composition of Li derived from

Lithium (Li) is a trace element in kerogen, but the content and isotopic distribution (δ7Li) in kerogen has not previously been quantified. Furthermore, kerogen has been overlooked as a potential source of Li to sedimentary porefluids and buried sediments. Thus, knowing the content and isotopic composition of Li derived from kerogen may have implications for research focused on the Li-isotopes of buried sediments (e.g., evaluating paleoclimate variations using marine carbonates).The objective of this work is to better understand the role of kerogen in the Li geochemical cycle. The research approach consisted of 1) developing reference materials and methodologies to measure the Li-contents and δ7Li of kerogen in-situ by Secondary Ion Mass Spectrometry, 2) surveying the Li-contents and δ7Li of kerogen bearing rocks from different depositional and diagenetic environments and 3) quantifying the Li-content and δ7Li variations in kerogen empirically in a field study and 4) experimentally through hydrous pyrolysis. A survey of δ7Li of coals from depositional basins across the USA showed that thermally immature coals have light δ7Li values (–20 to – 10‰) compared to typical terrestrial materials (> –10‰) and the δ7Li of coal increases with burial temperature suggesting that 6Li is preferentially released from kerogen to porefluids during hydrocarbon generation. A field study was conducted on two Cretaceous coal seams in Colorado (USA) intruded by dikes (mafic and felsic) creating a temperature gradient from the intrusives into the country rock. Results showed that δ7Li values of the unmetamorphosed vitrinite macerals were up to 37‰ lighter than vitrinite macerals and coke within the contact metamorphosed coal. To understand the significance of Li derived from kerogen during burial diagenesis, hydrous pyrolysis experiments of three coals were conducted. Results showed that Li is released from kerogen during hydrocarbon generation and could increase sedimentary porefluid Li-contents up to ~100 mg/L. The δ7Li of coals becomes heavier with increased temperature except where authigenic silicates may compete for the released Li. These results indicate that kerogen is a significant source of isotopically light Li to diagenetic fluids and is an important contributor to the global geochemical cycle.
ContributorsTeichert, Zebadiah (Author) / Williams, Lynda B. (Thesis advisor) / Bose, Maitrayee (Thesis advisor) / Hervig, Richard (Committee member) / Semken, Steven (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2022
165679-Thumbnail Image.png
Description
The Greater Obsidian Pool Area just south of the Mud Volcano area in Yellowstone National Park is an active and ever-changing hot spring region. Situated next to a lake in a meadow between several hills of glacial deposits, north of the Elephant Back rhyolite flow, a diverse group of hot

The Greater Obsidian Pool Area just south of the Mud Volcano area in Yellowstone National Park is an active and ever-changing hot spring region. Situated next to a lake in a meadow between several hills of glacial deposits, north of the Elephant Back rhyolite flow, a diverse group of hot springs has been developing. This study examines the geologic and geomorphic context of the hot springs, finding evidence for a previously undiscovered hydrothermal explosion crater and examining the deposits around the region that contribute to properties of the groundwater table. Hot spring geochemical measurements (Cl- and SO4-2) taken over the course of 20 years are used to determine fluid sourcing of the springs. The distribution of Cl-, an indicator of water-rock interaction, in the hot springs leads to the theory of a fissure delivering hydrothermal fluid in a line across the hot spring zone, with meteoric water from incoming groundwater diluting hot springs moving further from the fissure. A possible second dry fissure delivering mostly gas is also a possible explanation for some elevated sulfate concentrations in certain springs. The combination of geology, geomorphology, and geochemistry reveals how the surface and subsurface operate to generate different hot spring compositions.
ContributorsAlexander, Erin (Author) / Shock, Everett (Thesis director) / Whipple, Kelin (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05
164939-Thumbnail Image.png
Description

Heart disease is the leading cause of death in the developed world and often occurs following myocardial infarction. Apelin is an endogenous prepropeptide that has been studied for its role in improving cardiac contractility and vasodilation but suffers from a short half-life in the body. By encasing apelin in a

Heart disease is the leading cause of death in the developed world and often occurs following myocardial infarction. Apelin is an endogenous prepropeptide that has been studied for its role in improving cardiac contractility and vasodilation but suffers from a short half-life in the body. By encasing apelin in a nanoparticle patch, we were able to slowly release apelin to cardiac tissue and observe its effects for one month following induced myocardial infarction surgery in mice. This study demonstrates that the apelin nanoparticles can protect the heart from myocardial-induced heart failure, observing overall improved cardiac function and reduction of fibrotic scarring associated with post-myocardial infarction compared to a nontreated group.

ContributorsHenderson, Adam (Author) / Chen, Qiang (Thesis director) / Zhu, Wuqiang (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05
Description
Weight stigma is present in many aspects of society, and especially in medicine. Weight stigma has detrimental effects on individuals physical and mental health, as well as patient-physician interactions. Application of weight-neutral healthcare ideologies such as Health at Every Size (HAES) are promising ways of decreasing weight stigma within the

Weight stigma is present in many aspects of society, and especially in medicine. Weight stigma has detrimental effects on individuals physical and mental health, as well as patient-physician interactions. Application of weight-neutral healthcare ideologies such as Health at Every Size (HAES) are promising ways of decreasing weight stigma within the medical field without reducing the focus on improving patient health. Most widely applicable interventions include changing the focus of interactions from weight to health-promoting behaviors and lab values, improving provider education, and improving the general population's awareness of the problem.
ContributorsBrouhard, Mya (Author) / Chen, Qiang (Thesis director) / Parker, Lynn (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Psychology (Contributor)
Created2024-05
Description

Platelet Rich Plasma (PRP) is an emerging procedure in regenerative medicine that offers a non-surgical minimally invasive way for tissue repair and regeneration. PRP has many different bioactive molecules that are able to influence and help achieve greater recovery and regenerative outcomes. Diet has many effects on platelets and looking

Platelet Rich Plasma (PRP) is an emerging procedure in regenerative medicine that offers a non-surgical minimally invasive way for tissue repair and regeneration. PRP has many different bioactive molecules that are able to influence and help achieve greater recovery and regenerative outcomes. Diet has many effects on platelets and looking at the mechanism in which platelet function and aggregation are affected with different diets shows how they are able to affect PRP therapy. Looking at these mechanisms allows for better physician recommendations for preprocedural diets to optimize efficacy. This paper conducts a systematic review to investigate the influence that diet can have on PRP outcomes. It was shown that high fat diets lower the efficacy of treatment while the Mediterranean diet helps promote platelet function and help efficacy. The future is to look at more diets while also integrating lifestyle choice before treatment for optimal outcomes.

ContributorsLaguna, Sebastian (Author) / Chen, Qiang (Thesis director) / Goyle, Ashu (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2024-05
187656-Thumbnail Image.png
Description
Coccidioidomycosis, or valley fever (VF), is a fungal infection caused by Coccidioides that is highly endemic in southern Arizona and central California. The antibody response to infection in combination with clinical presentation and radiographic findings are often used to diagnose disease, as a highly sensitive and specific antigen-based assay has

Coccidioidomycosis, or valley fever (VF), is a fungal infection caused by Coccidioides that is highly endemic in southern Arizona and central California. The antibody response to infection in combination with clinical presentation and radiographic findings are often used to diagnose disease, as a highly sensitive and specific antigen-based assay has yet to be developed and commercialized. In this dissertation, a panel of monoclonal antibodies (mAbs) was generated in an attempt to identify circulating antigen in VF-positive patients. Despite utilizing a mixture of antigens, almost all mAbs obtained were against chitinase 1 (CTS1), a protein previously identified as a main component in serodiagnostic reagents. While CTS1 was undoubtedly a dominant seroreactive antigen, it was not successfully detected in circulation in patient samples prompting a shift toward further understanding the importance of CTS1 in antibody-based diagnostic assays. Interestingly, depletion of this antigen from diagnostic antigen preparations resulted in complete loss of patient IgG reactivity by immunodiffusion. This finding encouraged the development of a rapid, 10-minute point-of-care test in lateral flow assay (LFA) format to exclusively detect anti-CTS1 antibodies from human and non-human animal patients with coccidioidal infection. A CTS1 LFA was developed that demonstrated 92.9% sensitivity and 97.7% specificity when compared to current quantitative serologic assays (complement fixation and immunodiffusion). A commercially available LFA that utilizes a proprietary mixture of antigens was shown to be less sensitive (64.3%) and less specific (79.1%). This result provides evidence that a single antigen can be used to detect antibodies consistently and accurately from patients with VF. The LFA presented here shows promise as a helpful tool to rule-in or rule-out a diagnosis of VF such that patients may avoid unnecessary antibacterial treatments, improving healthcare efficiency.
ContributorsGrill, Francisca J (Author) / Lake, Douglas F (Thesis advisor) / Magee, D Mitch (Committee member) / Grys, Thomas (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2023
193034-Thumbnail Image.png
Description
Microplastics, plastics smaller than 5 mm, are an emerging concern worldwide due to their potential adverse effects on the environment and human health. Microplastics have the potential to biomagnify through the food chain, and are prone to adsorbing organic pollutants and heavy metals. Therefore, there is an urgent need to

Microplastics, plastics smaller than 5 mm, are an emerging concern worldwide due to their potential adverse effects on the environment and human health. Microplastics have the potential to biomagnify through the food chain, and are prone to adsorbing organic pollutants and heavy metals. Therefore, there is an urgent need to assess the extent of microplastic contamination in different environments. The occurrence of microplastics in the atmosphere of Tempe, AZ was investigated and results show concentrations as high as 1.1 microplastics/m3. The most abundant identified polymer was polyvinyl chloride. However, chemical characterization is fraught with challenges, with a majority of microplastics remaining chemically unidentified. Laboratory experiments simulating weathering of microplastics revealed that Raman spectra of microplastics change over time due to weathering processes. This work also studied the spatial variation of microplastics in soil in Phoenix and the surrounding areas of the Sonoran Desert, and microplastic abundances ranged from 122 to 1299 microplastics/kg with no clear trends between different locations, and substantial total deposition of microplastics occurring in the same location with resuspension and redistribution of deposited microplastics likely contributing to unclear spatial trends. Temporal variation of soil microplastics from 2005 to 2015 show a systematic increase in the abundance of microplastics. Polyethylene was prominent in all soil samples. Further, recreational surface waters were investigated as a potential source of microplastics in aquatic environments. The temporal variation of microplastics in the Salt River, AZ over the course of one day depicted an increase of 8 times in microplastic concentration at peak activity time of 16:00 hr compared to 8:00 hr. Concurrently, microplastic concentrations in surface water samples from apartment community swimming pools in Tempe, AZ depicted substantial variability with concentrations as high as 254,574 MPs/m3. Polyester and Polyamide fibers were prevalent in surface water samples, indicating a release from synthetic fabrics. Finally, a method for distinguishing tire wear microplastics from soot in ambient aerosol samples was developed using Programmed Thermal Analysis, that allows for the quantification of Elemental Carbon. The method was successfully applied on urban aerosol samples with results depicting substantial fractions of tire wear in urban atmospheric environments.
ContributorsChandrakanthan, Kanchana (Author) / Herckes, Pierre (Thesis advisor) / Fraser, Matthew (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2024