Matching Items (62)
161521-Thumbnail Image.png
Description
Viruses infect organisms in all domains of life and are abundant entities in ecosystems. In particular, single-stranded DNA viruses have been found in a wide variety of hosts and ecosystems. Using a metagenomic approach, novel circular viruses have been identified in multiple environmental samples. This thesis focuses on viruses and

Viruses infect organisms in all domains of life and are abundant entities in ecosystems. In particular, single-stranded DNA viruses have been found in a wide variety of hosts and ecosystems. Using a metagenomic approach, novel circular viruses have been identified in multiple environmental samples. This thesis focuses on viruses and virus dynamics from avian sources. As part of this thesis, a novel phapecoctavirus was identified in a pigeon cloacal swab. The phapecoctavirus is most closely related to Klebsiella phage ZCKP1, identified from a freshwater sample. Beyond this, this thesis addresses circoviruses, which are of interest due to disease they cause to avian species. Evolution of circovirus recombination was studied in a closed system of uninfected and infected pigeons. 178 genomes of pigeon circovirus were sequenced, and patterns of recombination determined. Seven genotypes were present in the population and genotype 4 was shown to be present in a majority of samples after the experiment was finished. Circoviruses were also identified in waterfowl feces and the ten genomes recovered represent two new circovirus species. Overall, the research described in this thesis helped to gain a deeper understanding of the diversity and evolution of circular DNA viruses associated with avian species.
ContributorsKhalifeh, Anthony (Author) / Varsani, Arvind (Thesis advisor) / Kraberger, Simona J (Committee member) / Dolby, Greer (Committee member) / Arizona State University (Publisher)
Created2021
161438-Thumbnail Image.png
Description
The family Cactaceae is extremely diverse and has a near global distribution yet very little has been described regarding the community of viruses that infect or are associated with cacti. This research characterizes the diversity of viruses associated with Cactaceae plants and their evolutionary aspects. Five viruses belonging to the

The family Cactaceae is extremely diverse and has a near global distribution yet very little has been described regarding the community of viruses that infect or are associated with cacti. This research characterizes the diversity of viruses associated with Cactaceae plants and their evolutionary aspects. Five viruses belonging to the economically relevant plant virus family Geminiviridae were identified, initially, two novel divergent geminiviruses named Opuntia virus 1 (OpV1) and Opuntia virus 2 (OpV2) and Opuntia becurtovirus, a new strain within the genus Becurtovirus. These three viruses were also found in co-infection. In addition, two known geminiviruses, the squash leaf curl virus (SLCV) and watermelon chlorotic stunt virus (WCSV) were identified infecting Cactaceae plants and other non-cactus plants in the USA and Mexico. Both SLCV and WCSV are known to cause severe disease in cultivated Cucurbitaceae plants in the USA and Middle East, respectively. This study shows that WCSV was introduced in the America two times, and it is the first identification of this virus in the USA, demonstrating is likely more widespread in North America. These findings along with the Opuntia becurtovirus are probable events of spill-over in agro-ecological interfaces. A novel circular DNA possibly bipartite plant-infecting virus that encodes protein similar to those of geminiviruses was also identified in an Opuntia discolor plant in Brazil, named utkilio virus, but it is evolutionary distinct likely belonging to a new taxon. Viruses belonging to the ssDNA viral family Genomoviridae are also described and those thus far been associated with fungi hosts, so it is likely the ones identified in plants are associated with their phytobiome. Overall, the results of this project provide a molecular and biological characterization of novel geminiviruses and genomoviruses associated with cacti as well as demonstrate the impact of agro-ecological interfaces in the spread of viruses from or to native plants. It also highlights the importance of viral metagenomics studies in exploring virus diversity and evolution given then amount of virus diversity identified. This is important for conservation and management of cacti in a global scale, including the relevance of controlled movement of plants within countries.
ContributorsSalgado Fontenele, Rafaela (Author) / Varsani, Arvind (Thesis advisor) / Wilson, Melissa (Committee member) / Majure, Lucas (Committee member) / Van Doorslaer, Koenraad (Committee member) / Wojciechowski, Martin (Committee member) / Arizona State University (Publisher)
Created2021
129508-Thumbnail Image.png
Description

Vision and Change in Undergraduate Biology Education outlined five core concepts intended to guide undergraduate biology education: 1) evolution; 2) structure and function; 3) information flow, exchange, and storage; 4) pathways and transformations of energy and matter; and 5) systems. We have taken these general recommendations and created a Vision

Vision and Change in Undergraduate Biology Education outlined five core concepts intended to guide undergraduate biology education: 1) evolution; 2) structure and function; 3) information flow, exchange, and storage; 4) pathways and transformations of energy and matter; and 5) systems. We have taken these general recommendations and created a Vision and Change BioCore Guide—a set of general principles and specific statements that expand upon the core concepts, creating a framework that biology departments can use to align with the goals of Vision and Change. We used a grassroots approach to generate the BioCore Guide, beginning with faculty ideas as the basis for an iterative process that incorporated feedback from more than 240 biologists and biology educators at a diverse range of academic institutions throughout the United States. The final validation step in this process demonstrated strong national consensus, with more than 90% of respondents agreeing with the importance and scientific accuracy of the statements. It is our hope that the BioCore Guide will serve as an agent of change for biology departments as we move toward transforming undergraduate biology education.

ContributorsBrownell, Sara (Author) / Freeman, Scott (Author) / Wenderoth, Mary Pat (Author) / Crowe, Alison J. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-06-01
129239-Thumbnail Image.png
Description

The U.S. scientific research community does not reflect America's diversity. Hispanics, African Americans, and Native Americans made up 31% of the general population in 2010, but they represented only 18 and 7% of science, technology, engineering, and mathematics (STEM) bachelor's and doctoral degrees, respectively, and 6% of STEM faculty members

The U.S. scientific research community does not reflect America's diversity. Hispanics, African Americans, and Native Americans made up 31% of the general population in 2010, but they represented only 18 and 7% of science, technology, engineering, and mathematics (STEM) bachelor's and doctoral degrees, respectively, and 6% of STEM faculty members (National Science Foundation [NSF], 2013). Equity in the scientific research community is important for a variety of reasons; a diverse community of researchers can minimize the negative influence of bias in scientific reasoning, because people from different backgrounds approach a problem from different perspectives and can raise awareness regarding biases (Intemann, 2009). Additionally, by failing to be attentive to equity, we may exclude some of the best and brightest scientific minds and limit the pool of possible scientists (Intemann, 2009). Given this need for equity, how can our scientific research community become more inclusive?

ContributorsBangera, Gita (Author) / Brownell, Sara (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
128826-Thumbnail Image.png
Description

Women who start college in one of the natural or physical sciences leave in greater proportions than their male peers. The reasons for this difference are complex, and one possible contributing factor is the social environment women experience in the classroom. Using social network analysis, we explore how gender influences

Women who start college in one of the natural or physical sciences leave in greater proportions than their male peers. The reasons for this difference are complex, and one possible contributing factor is the social environment women experience in the classroom. Using social network analysis, we explore how gender influences the confidence that college-level biology students have in each other’s mastery of biology. Results reveal that males are more likely than females to be named by peers as being knowledgeable about the course content. This effect increases as the term progresses, and persists even after controlling for class performance and outspokenness. The bias in nominations is specifically due to males over-nominating their male peers relative to their performance. The over-nomination of male peers is commensurate with an overestimation of male grades by 0.57 points on a 4 point grade scale, indicating a strong male bias among males when assessing their classmates. Females, in contrast, nominated equitably based on student performance rather than gender, suggesting they lacked gender biases in filling out these surveys. These trends persist across eleven surveys taken in three different iterations of the same Biology course. In every class, the most renowned students are always male. This favoring of males by peers could influence student self-confidence, and thus persistence in this STEM discipline.

ContributorsGrunspan, Daniel Z. (Author) / Eddy, Sarah L. (Author) / Brownell, Sara (Author) / Wiggins, Benjamin L. (Author) / Crowe, Alison J. (Author) / Goodreau, Steven M. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-10
128298-Thumbnail Image.png
Description

The shift from cookbook to authentic research-based lab courses in undergraduate biology necessitates the need for evaluation and assessment of these novel courses. Although the biology education community has made progress in this area, it is important that we interpret the effectiveness of these courses with caution and remain mindful

The shift from cookbook to authentic research-based lab courses in undergraduate biology necessitates the need for evaluation and assessment of these novel courses. Although the biology education community has made progress in this area, it is important that we interpret the effectiveness of these courses with caution and remain mindful of inherent limitations to our study designs that may impact internal and external validity. The specific context of a research study can have a dramatic impact on the conclusions. We present a case study of our own three-year investigation of the impact of a research-based introductory lab course, highlighting how volunteer students, a lack of a comparison group, and small sample sizes can be limitations of a study design that can affect the interpretation of the effectiveness of a course.

ContributorsBrownell, Sara (Author) / Kloser, Matthew J. (Author) / Fukami, Tadashi (Author) / Shavelson, Richard J. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-12-02
128130-Thumbnail Image.png
Description

Background: In Africa and Asia, sugarcane is the host of at least seven different virus species in the genus Mastrevirus of the family Geminiviridae. However, with the exception of Sugarcane white streak virus in Barbados, no other sugarcane-infecting mastrevirus has been reported in the New World. Conservation and exchange of sugarcane

Background: In Africa and Asia, sugarcane is the host of at least seven different virus species in the genus Mastrevirus of the family Geminiviridae. However, with the exception of Sugarcane white streak virus in Barbados, no other sugarcane-infecting mastrevirus has been reported in the New World. Conservation and exchange of sugarcane germplasm using stalk cuttings facilitates the spread of sugarcane-infecting viruses.

Methods: A virion-associated nucleic acids (VANA)-based metagenomics approach was used to detect mastrevirus sequences in 717 sugarcane samples from Florida (USA), Guadeloupe (French West Indies), and Réunion (Mascarene Islands). Contig assembly was performed using CAP3 and sequence searches using BLASTn and BLASTx. Mastrevirus full genomes were enriched from total DNA by rolling circle amplification, cloned and sequenced. Nucleotide and amino acid sequence identities were determined using SDT v1.2. Phylogenetic analyses were conducted using MEGA6 and PHYML3.

Results: We identified a new sugarcane-infecting mastrevirus in six plants sampled from germplasm collections in Florida and Guadeloupe. Full genome sequences were determined and analyzed for three virus isolates from Florida, and three from Guadeloupe. These six genomes share >88% genome-wide pairwise identity with one another and between 89 and 97% identity with a recently identified mastrevirus (KR150789) from a sugarcane plant sampled in China. Sequences similar to these were also identified in sugarcane plants in Réunion.

Conclusions: As these virus isolates share <64% genome-wide identity with all other known mastreviruses, we propose classifying them within a new mastrevirus species named Sugarcane striate virus. This is the first report of sugarcane striate virus (SCStV) in the Western Hemisphere, a virus that most likely originated in Asia. The distribution, vector, and impact of SCStV on sugarcane production remains to be determined.

ContributorsBoukari, Wardatou (Author) / Alcala-Briseno, Ricardo I. (Author) / Kraberger, Simona Joop (Author) / Fernandez, Emmanuel (Author) / Filloux, Denis (Author) / Daugrois, Jean-Heinrich (Author) / Comstock, Jack C. (Author) / Lett, Jean-Michel (Author) / Martin, Darren P. (Author) / Varsani, Arvind (Author) / Roumagnac, Philippe (Author) / Polston, Jane E. (Author) / Rott, Philippe C. (Author) / Biodesign Institute (Contributor)
Created2017-07-28
128136-Thumbnail Image.png
Description

Bacteriophages are ideal candidates for pathogen biocontrol to mitigate outbreaks of prevalent foodborne pathogens, such as Escherichia coli. We identified a bacteriophage (AAPEc6) from wastewater that infects E. coli O45:H10. The AAPEc6 genome sequence shares 93% identity (with 92% coverage) to enterobacterial phage K1E (Sp6likevirus) in the Autographivirinae subfamily (Podoviridae).

ContributorsNonis, Judith (Author) / Premaratne, Aruni (Author) / Billington, Craig (Author) / Varsani, Arvind (Author) / Biodesign Institute (Contributor)
Created2017-08-03
128352-Thumbnail Image.png
Description

Four genomovirus genomes were recovered from thrips (Echinothrips americanus) collected in Florida, USA. These represent four new species which are members of the Gemycircularvirus (n = 2), Gemyduguivirus (n = 1), and Gemykibivirus (n = 1) genera. This is the first record, to our knowledge, of genomoviruses associated with a

Four genomovirus genomes were recovered from thrips (Echinothrips americanus) collected in Florida, USA. These represent four new species which are members of the Gemycircularvirus (n = 2), Gemyduguivirus (n = 1), and Gemykibivirus (n = 1) genera. This is the first record, to our knowledge, of genomoviruses associated with a phytophagous insect.

ContributorsKraberger, Simona Joop (Author) / Polston, Jane E. (Author) / Capobianco, Heather M. (Author) / Alcala-Briseno, Ricardo I. (Author) / Fontenele, Rafaela Salgado (Author) / Varsani, Arvind (Author) / Biodesign Institute (Contributor)
Created2017-05-25
128359-Thumbnail Image.png
Description

Course-based undergraduate research experiences (CUREs) meet national recommendations for integrating research experiences into life science curricula. As such, CUREs have grown in popularity and many research studies have focused on student outcomes from CUREs. Institutional change literature highlights that understanding faculty is also key to new pedagogies succeeding. To begin

Course-based undergraduate research experiences (CUREs) meet national recommendations for integrating research experiences into life science curricula. As such, CUREs have grown in popularity and many research studies have focused on student outcomes from CUREs. Institutional change literature highlights that understanding faculty is also key to new pedagogies succeeding. To begin to understand faculty perspectives on CUREs, we conducted semi-structured interviews with 61 faculty who teach CUREs regarding why they teach CUREs, what the outcomes are, and how they would discuss a CURE with a colleague. Using grounded theory, participant responses were coded and categorized as tangible or intangible, related to both student and faculty-centered themes. We found that intangible themes were prevalent, and that there were significant differences in the emphasis on tangible themes for faculty who have developed their own independent CUREs when compared with faculty who implement pre-developed, national CUREs. We focus our results on the similarities and differences among the perspectives of faculty who teach these two different CURE types and explore trends among all participants. The results of this work highlight the need for considering a multi-dimensional framework to understand, promote, and successfully implement CUREs.

ContributorsShortlidge, Erin (Author) / Bangera, Gita (Author) / Brownell, Sara (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-26