Matching Items (45)
155179-Thumbnail Image.png
Description
A key factor in the success of social animals is their organization of work. Mathematical models have been instrumental in unraveling how simple, individual-based rules can generate collective patterns via self-organization. However, existing models offer limited insights into how these patterns are shaped by behavioral differences within groups, in part

A key factor in the success of social animals is their organization of work. Mathematical models have been instrumental in unraveling how simple, individual-based rules can generate collective patterns via self-organization. However, existing models offer limited insights into how these patterns are shaped by behavioral differences within groups, in part because they focus on analyzing specific rules rather than general mechanisms that can explain behavior at the individual-level. My work argues for a more principled approach that focuses on the question of how individuals make decisions in costly environments.

In Chapters 2 and 3, I demonstrate how this approach provides novel insights into factors that shape the flexibility and robustness of task organization in harvester ant colonies (Pogonomyrmex barbatus). My results show that the degree to which colonies can respond to work in fluctuating environments depends on how individuals weigh the costs of activity and update their behavior in response to social information. In Chapter 4, I introduce a mathematical framework to study the emergence of collective organization in heterogenous groups. My approach, which is based on the theory of multi-agent systems, focuses on myopic agents whose behavior emerges out of an independent valuation of alternative choices in a given work environment. The product of this dynamic is an equilibrium organization in which agents perform different tasks (or abstain from work) with an analytically defined set of threshold probabilities. The framework is minimally developed, but can be extended to include other factors known to affect task decisions including individual experience and social facilitation. This research contributes a novel approach to developing (and analyzing) models of task organization that can be applied in a broader range of contexts where animals cooperate.
ContributorsUdiani, Oyita (Author) / Kang, Yun (Thesis advisor) / Fewell, Jennifer H (Thesis advisor) / Janssen, Marcus A (Committee member) / Castillo-Chavez, Carlos (Committee member) / Arizona State University (Publisher)
Created2016
128149-Thumbnail Image.png
Description

Wetlands are the world's largest natural source of methane, a powerful greenhouse gas. The strong sensitivity of methane emissions to environmental factors such as soil temperature and moisture has led to concerns about potential positive feedbacks to climate change. This risk is particularly relevant at high latitudes, which have experienced

Wetlands are the world's largest natural source of methane, a powerful greenhouse gas. The strong sensitivity of methane emissions to environmental factors such as soil temperature and moisture has led to concerns about potential positive feedbacks to climate change. This risk is particularly relevant at high latitudes, which have experienced pronounced warming and where thawing permafrost could potentially liberate large amounts of labile carbon over the next 100 years. However, global models disagree as to the magnitude and spatial distribution of emissions, due to uncertainties in wetland area and emissions per unit area and a scarcity of in situ observations. Recent intensive field campaigns across the West Siberian Lowland (WSL) make this an ideal region over which to assess the performance of large-scale process-based wetland models in a high-latitude environment. Here we present the results of a follow-up to the Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP), focused on the West Siberian Lowland (WETCHIMP-WSL). We assessed 21 models and 5 inversions over this domain in terms of total CH4 emissions, simulated wetland areas, and CH4 fluxes per unit wetland area and compared these results to an intensive in situ CH4 flux data set, several wetland maps, and two satellite surface water products. We found that (a) despite the large scatter of individual estimates, 12-year mean estimates of annual total emissions over the WSL from forward models (5.34 ± 0.54 Tg CH4 yr-1), inversions (6.06 ± 1.22 Tg CH4 yr-1), and in situ observations (3.91 ± 1.29 Tg CH4 yr-1) largely agreed; (b) forward models using surface water products alone to estimate wetland areas suffered from severe biases in CH4 emissions; (c) the interannual time series of models that lacked either soil thermal physics appropriate to the high latitudes or realistic emissions from unsaturated peatlands tended to be dominated by a single environmental driver (inundation or air temperature), unlike those of inversions and more sophisticated forward models; (d) differences in biogeochemical schemes across models had relatively smaller influence over performance; and (e) multiyear or multidecade observational records are crucial for evaluating models' responses to long-term climate change.

ContributorsBohn, Theodore (Author) / Melton, J. R. (Author) / Ito, A. (Author) / Kleinen, T. (Author) / Spahni, R. (Author) / Stocker, B. D. (Author) / Zhang, B. (Author) / Zhu, X. (Author) / Schroeder, R. (Author) / Glagolev, M. V. (Author) / Maksyutov, S. (Author) / Brovkin, V. (Author) / Chen, G. (Author) / Denisov, S. N. (Author) / Eliseev, A. V. (Author) / Gallego-Sala, A. (Author) / McDonald, K. C. (Author) / Rawlins, M. A. (Author) / Riley, W. J. (Author) / Subin, Z. M. (Author) / Tian, H. (Author) / Zhuang, Q. (Author) / Kaplan, J. O. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-06-03
128234-Thumbnail Image.png
Description

Climate factors including soil temperature and moisture, incident solar radiation, and atmospheric carbon dioxide concentration are important environmental controls on methane (CH4) emissions from northern wetlands. We investigated the spatiotemporal distributions of the influence of these factors on northern high-latitude wetland CH4 emissions using an enhanced version of the Variable

Climate factors including soil temperature and moisture, incident solar radiation, and atmospheric carbon dioxide concentration are important environmental controls on methane (CH4) emissions from northern wetlands. We investigated the spatiotemporal distributions of the influence of these factors on northern high-latitude wetland CH4 emissions using an enhanced version of the Variable Infiltration Capacity (VIC) land surface model. We simulated CH4 emissions from wetlands across the pan-Arctic domain over the period 1948–2006, yielding annual average emissions of 36.1 ± 6.7 Tg CH4 yr-1 for the period 1997–2006. We characterized historical sensitivities of CH4 emissions to air temperature, precipitation, incident long- and shortwave radiation, and atmospheric [CO2] as a function of average summer air temperature and precipitation. Emissions from relatively warm and dry wetlands in the southern (permafrost-free) portion of the domain were positively correlated with precipitation and negatively correlated with air temperature, while emissions from wetter and colder wetlands further north (permafrost) were positively correlated with air temperature. Over the entire period 1948–2006, our reconstructed CH4 emissions increased by 20 %, the majority of which can be attributed to an increasing trend in summer air temperature. We estimated future emissions in response to 21st century warming as predicted by CMIP5 (Coupled Model Intercomparison Project Phase 5) model projections to result in end-of-century CH4 emissions 38–53 % higher than our reconstructed 1997–2006 emissions, accompanied by the northward migration of warmer and drier than optimal conditions for CH4 emissions, implying a reduced role for temperature in driving future increases in emissions.

ContributorsChen, X. (Author) / Bohn, Theodore (Author) / Lettenmaier, D. P. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-11-02
128796-Thumbnail Image.png
Description

Methicillin resistant Staphylococcus aureus (MRSA) is currently a major cause of skin and soft tissue infections (SSTI) in the United States. Seasonal variation of MRSA infections in hospital settings has been widely observed. However, systematic time-series analysis of incidence data is desirable to understand the seasonality of community acquired (CA)-MRSA

Methicillin resistant Staphylococcus aureus (MRSA) is currently a major cause of skin and soft tissue infections (SSTI) in the United States. Seasonal variation of MRSA infections in hospital settings has been widely observed. However, systematic time-series analysis of incidence data is desirable to understand the seasonality of community acquired (CA)-MRSA infections at the population level. In this paper, using data on monthly SSTI incidence in children aged 0–19 years and enrolled in Medicaid in Maricopa County, Arizona, from January 2005 to December 2008, we carried out time-series and nonlinear regression analysis to determine the periodicity, trend, and peak timing in SSTI incidence in children at different age: 0-4 years, 5-9 years, 10-14 years, and 15-19 years. We also assessed the temporal correlation between SSTI incidence and meteorological variables including average temperature and humidity. Our analysis revealed a strong annual seasonal pattern of SSTI incidence with peak occurring in early September. This pattern was consistent across age groups. Moreover, SSTIs followed a significantly increasing trend over the 4-year study period with annual incidence increasing from 3.36% to 5.55% in our pediatric population of approximately 290,000. We also found a significant correlation between the temporal variation in SSTI incidence and mean temperature and specific humidity. Our findings could have potential implications on prevention and control efforts against CA-MRSA.

Created2013-04-02
128802-Thumbnail Image.png
Description

The large-scale use of antivirals during influenza pandemics poses a significant selection pressure for drug-resistant pathogens to emerge and spread in a population. This requires treatment strategies to minimize total infections as well as the emergence of resistance. Here we propose a mathematical model in which individuals infected with wild-type

The large-scale use of antivirals during influenza pandemics poses a significant selection pressure for drug-resistant pathogens to emerge and spread in a population. This requires treatment strategies to minimize total infections as well as the emergence of resistance. Here we propose a mathematical model in which individuals infected with wild-type influenza, if treated, can develop de novo resistance and further spread the resistant pathogen. Our main purpose is to explore the impact of two important factors influencing treatment effectiveness: i) the relative transmissibility of the drug-resistant strain to wild-type, and ii) the frequency of de novo resistance. For the endemic scenario, we find a condition between these two parameters that indicates whether treatment regimes will be most beneficial at intermediate or more extreme values (e.g., the fraction of infected that are treated). Moreover, we present analytical expressions for effective treatment regimes and provide evidence of its applicability across a range of modeling scenarios: endemic behavior with deterministic homogeneous mixing, and single-epidemic behavior with deterministic homogeneous mixing and stochastic heterogeneous mixing. Therefore, our results provide insights for the control of drug-resistance in influenza across time scales.

Created2013-03-29