Matching Items (49)
128298-Thumbnail Image.png
Description

The shift from cookbook to authentic research-based lab courses in undergraduate biology necessitates the need for evaluation and assessment of these novel courses. Although the biology education community has made progress in this area, it is important that we interpret the effectiveness of these courses with caution and remain mindful

The shift from cookbook to authentic research-based lab courses in undergraduate biology necessitates the need for evaluation and assessment of these novel courses. Although the biology education community has made progress in this area, it is important that we interpret the effectiveness of these courses with caution and remain mindful of inherent limitations to our study designs that may impact internal and external validity. The specific context of a research study can have a dramatic impact on the conclusions. We present a case study of our own three-year investigation of the impact of a research-based introductory lab course, highlighting how volunteer students, a lack of a comparison group, and small sample sizes can be limitations of a study design that can affect the interpretation of the effectiveness of a course.

ContributorsBrownell, Sara (Author) / Kloser, Matthew J. (Author) / Fukami, Tadashi (Author) / Shavelson, Richard J. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-12-02
128313-Thumbnail Image.png
Description

Climate change and its interactions with complex socioeconomic dynamics dictate the need for decision makers to move from incremental adaptation toward transformation as societies try to cope with unprecedented and uncertain change. Developing pathways toward transformation is especially difficult in regions with multiple contested resource uses and rights, with diverse

Climate change and its interactions with complex socioeconomic dynamics dictate the need for decision makers to move from incremental adaptation toward transformation as societies try to cope with unprecedented and uncertain change. Developing pathways toward transformation is especially difficult in regions with multiple contested resource uses and rights, with diverse decision makers and rules, and where high uncertainty is generated by differences in stakeholders’ values, understanding of climate change, and ways of adapting. Such a region is the Murray-Darling Basin, Australia, from which we provide insights for developing a process to address these constraints. We present criteria for sequencing actions along adaptation pathways: feasibility of the action within the current decision context, its facilitation of other actions, its role in averting exceedance of a critical threshold, its robustness and resilience under diverse and unexpected shocks, its effect on future options, its lead time, and its effects on equity and social cohesion. These criteria could potentially enable development of multiple stakeholder-specific adaptation pathways through a regional collective action process. The actual implementation of these multiple adaptation pathways will be highly uncertain and politically difficult because of fixity of resource-use rights, unequal distribution of power, value conflicts, and the likely redistribution of benefits and costs. We propose that the approach we outline for building resilient pathways to transformation is a flexible and credible way of negotiating these challenges.

ContributorsAbel, Nick (Author) / Wise, Russell M. (Author) / Colloff, Matthew J. (Author) / Walker, Brian H. (Author) / Butler, James R. A. (Author) / Ryan, Paul (Author) / Norman, Chris (Author) / Langston, Art (Author) / Anderies, John (Author) / Gorddard, Russell (Author) / Dunlop, Michael (Author) / O'Connell, Deborah (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016
128326-Thumbnail Image.png
Description

Globalization, the process by which local social-ecological systems (SESs) are becoming linked in a global network, presents policy scientists and practitioners with unique and difficult challenges. Although local SESs can be extremely complex, when they become more tightly linked in the global system, complexity increases very rapidly as multi-scale and

Globalization, the process by which local social-ecological systems (SESs) are becoming linked in a global network, presents policy scientists and practitioners with unique and difficult challenges. Although local SESs can be extremely complex, when they become more tightly linked in the global system, complexity increases very rapidly as multi-scale and multi-level processes become more important. Here, we argue that addressing these multi-scale and multi-level challenges requires a collection of theories and models. We suggest that the conceptual domains of sustainability, resilience, and robustness provide a sufficiently rich collection of theories and models, but overlapping definitions and confusion about how these conceptual domains articulate with one another reduces their utility. We attempt to eliminate this confusion and illustrate how sustainability, resilience, and robustness can be used in tandem to address the multi-scale and multi-level challenges associated with global change.

ContributorsAnderies, John (Author) / Folke, Carl (Author) / Walker, Brian (Author) / Ostrom, Elinor (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013
128122-Thumbnail Image.png
Description

Active learning in college classes and participation in the workforce frequently hinge on small group work. However, group dynamics vary, ranging from equitable collaboration to dysfunctional groups dominated by one individual. To explore how group dynamics impact student learning, we asked students in a large-enrollment university biology class to self-report

Active learning in college classes and participation in the workforce frequently hinge on small group work. However, group dynamics vary, ranging from equitable collaboration to dysfunctional groups dominated by one individual. To explore how group dynamics impact student learning, we asked students in a large-enrollment university biology class to self-report their experience during in-class group work. Specifically, we asked students whether there was a friend in their group, whether they were comfortable in their group, and whether someone dominated their group. Surveys were administered after students participated in two different types of intentionally constructed group activities: 1) a loosely-structured activity wherein students worked together for an entire class period (termed the ‘single-group’ activity), or 2) a highly-structured ‘jigsaw’ activity wherein students first independently mastered different subtopics, then formed new groups to peer-teach their respective subtopics. We measured content mastery by the change in score on identical pre-/post-tests. We then investigated whether activity type or student demographics predicted the likelihood of reporting working with a dominator, being comfortable in their group, or working with a friend. We found that students who more strongly agreed that they worked with a dominator were 17.8% less likely to answer an additional question correct on the 8-question post-test. Similarly, when students were comfortable in their group, content mastery increased by 27.5%. Working with a friend was the single biggest predictor of student comfort, although working with a friend did not impact performance. Finally, we found that students were 67% less likely to agree that someone dominated their group during the jigsaw activities than during the single group activities. We conclude that group activities that rely on positive interdependence, and include turn-taking and have explicit prompts for students to explain their reasoning, such as our jigsaw, can help reduce the negative impact of inequitable groups.

ContributorsTheobald, Elli J. (Author) / Eddy, Sarah L. (Author) / Grunspan, Daniel (Author) / Wiggins, Benjamin L. (Author) / Crowe, Alison J. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-07-20
128184-Thumbnail Image.png
Description

Social roles are thought to play an important role in determining the capacity for collective action in a community regarding the use of shared resources. Here we report on the results of a study using a behavioral experimental approach regarding the relationship between social roles and the performance of social-ecological

Social roles are thought to play an important role in determining the capacity for collective action in a community regarding the use of shared resources. Here we report on the results of a study using a behavioral experimental approach regarding the relationship between social roles and the performance of social-ecological systems. The computer-based irrigation experiment that was the basis of this study mimics the decisions faced by farmers in small-scale irrigation systems. In each of 20 rounds, which are analogous to growing seasons, participants face a two-stage commons dilemma. First they must decide how much to invest in the public infrastructure, e.g., canals and water diversion structures. Second, they must decide how much to extract from the water made available by that public infrastructure. Each round begins with a 60-second communication period before the players make their investment and extraction decisions. By analyzing the chat messages exchanged among participants during the communication stage of the experiment, we coded up to three roles per participant using the scheme of seven roles known to be important in the literature: leader, knowledge generator, connector, follower, moralist, enforcer, and observer. Our study supports the importance of certain social roles (e.g., connector) previously highlighted by several case study analyses. However, using qualitative comparative analysis we found that none of the individual roles was sufficient for groups to succeed, i.e., to reach a certain level of group production. Instead, we found that a combination of at least five roles was necessary for success. In addition, in the context of upstream-downstream asymmetry, we observed a pattern in which social roles assumed by participants tended to differ by their positions. Although our work generated some interesting insights, further research is needed to determine how robust our findings are to different action situations, such as biophysical context, social network, and resource uncertainty.

ContributorsPerez, Irene (Author) / Yu, David (Author) / Janssen, Marco (Author) / Anderies, John (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2015
128244-Thumbnail Image.png
Description

Large-N comparative studies have helped common pool resource scholars gain general insights into the factors that influence collective action and governance outcomes. However, these studies are often limited by missing data, and suffer from the methodological limitation that important information is lost when we reduce textual information to quantitative data.

Large-N comparative studies have helped common pool resource scholars gain general insights into the factors that influence collective action and governance outcomes. However, these studies are often limited by missing data, and suffer from the methodological limitation that important information is lost when we reduce textual information to quantitative data. This study was motivated by nine case studies that appeared to be inconsistent with the expectation that the presence of Ostrom’s Design Principles increases the likelihood of successful common pool resource governance. These cases highlight the limitations of coding and analyzing Large-N case studies.

We examine two issues: 1) the challenge of missing data and 2) potential approaches that rely on context (which is often lost in the coding process) to address inconsistencies between empirical observations theoretical predictions. For the latter, we conduct a post-hoc qualitative analysis of a large-N comparative study to explore 2 types of inconsistencies: 1) cases where evidence for nearly all design principles was found, but available evidence led to the assessment that the CPR system was unsuccessful and 2) cases where the CPR system was deemed successful despite finding limited or no evidence for design principles. We describe inherent challenges to large-N comparative analysis to coding complex and dynamically changing common pool resource systems for the presence or absence of design principles and the determination of “success”. Finally, we illustrate how, in some cases, our qualitative analysis revealed that the identity of absent design principles explained inconsistencies hence de-facto reconciling such apparent inconsistencies with theoretical predictions. This analysis demonstrates the value of combining quantitative and qualitative analysis, and using mixed-methods approaches iteratively to build comprehensive methodological and theoretical approaches to understanding common pool resource governance in a dynamically changing context.

ContributorsBarnett, Allain (Author) / Baggio, Jacopo (Author) / Shin, Hoon Cheol (Author) / Yu, David (Author) / Perez Ibarra, Irene (Author) / Rubinos, Cathy (Author) / Brady, Ute (Author) / Ratajczyk, Elicia (Author) / Rollins, Nathan (Author) / Aggarwal, Rimjhim (Author) / Anderies, John (Author) / Janssen, Marco (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2016-09-09
128247-Thumbnail Image.png
Description

Institutions, the rules of the game that shape repeated human interactions, clearly play a critical role in helping groups avoid the inefficient use of shared resources such as fisheries, freshwater, and the assimilative capacity of the environment. Institutions, however, are intimately intertwined with the human, social, and biophysical context within

Institutions, the rules of the game that shape repeated human interactions, clearly play a critical role in helping groups avoid the inefficient use of shared resources such as fisheries, freshwater, and the assimilative capacity of the environment. Institutions, however, are intimately intertwined with the human, social, and biophysical context within which they operate. Scholars typically are careful to take this context into account when studying institutions and Ostrom’s Institutional Design Principles are a case in point. Scholars have tested whether Ostrom’s Design Principles, which specify broad relationships between institutional arrangements and context, actually support successful governance of shared resources. This article further contributes to this line of research by leveraging the notion of institutional design to outline a research trajectory focused on coupled infrastructure systems in which institutions are seen as one class of infrastructure among many that dynamically interact to produce outcomes over time.

ContributorsAnderies, John (Author) / Janssen, Marco (Author) / Schlager, Edella (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-09-23
128255-Thumbnail Image.png
Description

STEM classrooms (science, technology, engineering, and mathematics) in postsecondary education are rapidly improved by the proper use of active learning techniques. These techniques occupy a descriptive spectrum that transcends passive teaching toward active, constructive, and, finally, interactive methods. While aspects of this framework have been examined, no large-scale or actual

STEM classrooms (science, technology, engineering, and mathematics) in postsecondary education are rapidly improved by the proper use of active learning techniques. These techniques occupy a descriptive spectrum that transcends passive teaching toward active, constructive, and, finally, interactive methods. While aspects of this framework have been examined, no large-scale or actual classroom-based data exist to inform postsecondary education STEM instructors about possible learning gains. We describe the results of a quasi-experimental study to test the apex of the ICAP framework (interactive, constructive, active, and passive) in this ecological classroom environment. Students in interactive classrooms demonstrate significantly improved learning outcomes relative to students in constructive classrooms. This improvement in learning is relatively subtle; similar experimental designs without repeated measures would be unlikely to have the power to observe this significance. We discuss the importance of seemingly small learning gains that might propagate throughout a course or departmental curriculum, as well as improvements with the necessity for faculty to develop and implement similar activities.

ContributorsWiggins, Benjamin L. (Author) / Eddy, Sarah L. (Author) / Grunspan, Daniel (Author) / Crowe, Alison J. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-04-01
128359-Thumbnail Image.png
Description

Course-based undergraduate research experiences (CUREs) meet national recommendations for integrating research experiences into life science curricula. As such, CUREs have grown in popularity and many research studies have focused on student outcomes from CUREs. Institutional change literature highlights that understanding faculty is also key to new pedagogies succeeding. To begin

Course-based undergraduate research experiences (CUREs) meet national recommendations for integrating research experiences into life science curricula. As such, CUREs have grown in popularity and many research studies have focused on student outcomes from CUREs. Institutional change literature highlights that understanding faculty is also key to new pedagogies succeeding. To begin to understand faculty perspectives on CUREs, we conducted semi-structured interviews with 61 faculty who teach CUREs regarding why they teach CUREs, what the outcomes are, and how they would discuss a CURE with a colleague. Using grounded theory, participant responses were coded and categorized as tangible or intangible, related to both student and faculty-centered themes. We found that intangible themes were prevalent, and that there were significant differences in the emphasis on tangible themes for faculty who have developed their own independent CUREs when compared with faculty who implement pre-developed, national CUREs. We focus our results on the similarities and differences among the perspectives of faculty who teach these two different CURE types and explore trends among all participants. The results of this work highlight the need for considering a multi-dimensional framework to understand, promote, and successfully implement CUREs.

ContributorsShortlidge, Erin (Author) / Bangera, Gita (Author) / Brownell, Sara (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-26
128360-Thumbnail Image.png
Description

We recommend using backward design to develop course-based undergraduate research experiences (CUREs). The defining hallmark of CUREs is that students in a formal lab course explore research questions with unknown answers that are broadly relevant outside the course. Because CUREs lead to novel research findings, they represent a unique course

We recommend using backward design to develop course-based undergraduate research experiences (CUREs). The defining hallmark of CUREs is that students in a formal lab course explore research questions with unknown answers that are broadly relevant outside the course. Because CUREs lead to novel research findings, they represent a unique course design challenge, as the dual nature of these courses requires course designers to consider two distinct, but complementary, sets of goals for the CURE: 1) scientific discovery milestones (i.e., research goals) and 2) student learning in cognitive, psychomotor, and affective domains (i.e., pedagogical goals). As more undergraduate laboratory courses are re-imagined as CUREs, how do we thoughtfully design these courses to effectively meet both sets of goals? In this Perspectives article, we explore this question and outline recommendations for using backward design in CURE development.

ContributorsCooper, Katelyn (Author) / Soneral, Paula A. G. (Author) / Brownell, Sara (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-26