Matching Items (48)
148162-Thumbnail Image.png
Description

Surveys have shown that several hundred billion weather forecasts are obtained by the United States public each year, and that weather news is one of the most consumed topics in the media. This indicates that the forecast provides information that is significant to the public, and that the public utilizes

Surveys have shown that several hundred billion weather forecasts are obtained by the United States public each year, and that weather news is one of the most consumed topics in the media. This indicates that the forecast provides information that is significant to the public, and that the public utilizes details associated with it to inform aspects of their life. Phoenix, Arizona is a dry, desert region that experiences a monsoon season and extreme heat. How then, does the weather forecast influence the way Phoenix residents make decisions? This paper aims to draw connections between the weather forecast, decision making, and people who live in a desert environment. To do this, a ten-minute survey was deployed through Amazon Mechanical Turk (MTurk) in which 379 respondents were targeted. The survey asks 45 multiple choice and ranking questions categorized into four sections: obtainment of the forecast, forecast variables of interest, informed decision making based on unique weather variables, and demographics. This research illuminates how residents in the Phoenix metropolitan area use the local weather forecast for decision-making on daily activities, and the main meteorological factors that drive those decisions.

ContributorsMarturano, Julia (Author) / Middel, Ariane (Thesis director) / Schneider, Florian (Committee member) / School of Geographical Sciences and Urban Planning (Contributor, Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
The purpose of this thesis was to explore how changes in the geometry of a bifurcating cerebral aneurysm will affect the hemodynamics in idealized models after stent treatment. This thesis explores the use of a computationally modeled Enterprise Vascular Reconstruction Device (Cordis, East Bridgewater, NJ), a high porosity and closed

The purpose of this thesis was to explore how changes in the geometry of a bifurcating cerebral aneurysm will affect the hemodynamics in idealized models after stent treatment. This thesis explores the use of a computationally modeled Enterprise Vascular Reconstruction Device (Cordis, East Bridgewater, NJ), a high porosity and closed cell design. The models represent idealized cases of saccular aneurysms with dome sizes of either 4mm or 6mm and a dome to neck ratio of either 3:2 or 2:1. Two aneurysm contact angles are studied, one at 45 degrees and the other at 90 degrees. The stent was characterized and deployed with the use of Finite Element Analysis into each model. Computational Fluid Dynamic principles were applied in series of simulations on treated and untreated models. Data was gathered in the neck plane for the average velocity magnitude, root mean squared velocity, average flow vector angle of deflection, and the cross neck flow rate. Within the aneurysm, the average velocity magnitude, root mean squared velocity, and average pressure were calculated. Additionally, the mass flow rate at each outlet was recorded. The results of this study indicate that the Enterprise Stent was most effective in the sharper, 90 degree geometry of Model 3. Additionally, the stent had an adverse effect on the Models 1 and 4, which had the smallest neck sizes. Conclusions are that the Enterprise Stent, as a stand-alone treatment method is only reliable in situations that take advantage of its design.
ContributorsThomas, Kyle Andrew (Author) / Frakes, David (Thesis director) / LaBelle, Jeffrey (Committee member) / Babiker, Haithem (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
Description
Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use

Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use them for developing software for laboratory automation systems. This thesis proposes an architecture that is based on existing software architectural paradigms and is specifically tailored to developing software for a laboratory automation system. The architecture is based on fairly autonomous software components that can be distributed across multiple computers. The components in the architecture make use of asynchronous communication methodologies that are facilitated by passing messages between one another. The architecture can be used to develop software that is distributed, responsive and thread-safe. The thesis also proposes a framework that has been developed to implement the ideas proposed by the architecture. The framework is used to develop software that is scalable, distributed, responsive and thread-safe. The framework currently has components to control very commonly used laboratory automation devices such as mechanical stages, cameras, and also to do common laboratory automation functionalities such as imaging.
ContributorsKuppuswamy, Venkataramanan (Author) / Meldrum, Deirdre (Thesis advisor) / Collofello, James (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Johnson, Roger (Committee member) / Arizona State University (Publisher)
Created2012
151177-Thumbnail Image.png
Description
Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of

Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of single cells. Yet to date, no live-cell compatible version of the technology exists. In this thesis, a microfluidic chip with the ability to rotate live single cells in hydrodynamic microvortices about an axis parallel to the optical focal plane has been demonstrated. The chip utilizes a novel 3D microchamber design arranged beneath a main channel creating flow detachment into the chamber, producing recirculating flow conditions. Single cells are flowed through the main channel, held in the center of the microvortex by an optical trap, and rotated by the forces induced by the recirculating fluid flow. Computational fluid dynamics (CFD) was employed to optimize the geometry of the microchamber. Two methods for the fabrication of the 3D microchamber were devised: anisotropic etching of silicon and backside diffuser photolithography (BDPL). First, the optimization of the silicon etching conditions was demonstrated through design of experiment (DOE). In addition, a non-conventional method of soft-lithography was demonstrated which incorporates the use of two positive molds, one of the main channel and the other of the microchambers, compressed together during replication to produce a single ultra-thin (<200 µm) negative used for device assembly. Second, methods for using thick negative photoresists such as SU-8 with BDPL have been developed which include a new simple and effective method for promoting the adhesion of SU-8 to glass. An assembly method that bonds two individual ultra-thin (<100 µm) replications of the channel and the microfeatures has also been demonstrated. Finally, a pressure driven pumping system with nanoliter per minute flow rate regulation, sub-second response times, and < 3% flow variability has been designed and characterized. The fabrication and assembly of this device is inexpensive and utilizes simple variants of conventional microfluidic fabrication techniques, making it easily accessible to the single cell analysis community.
ContributorsMyers, Jakrey R (Author) / Meldrum, Deirdre (Thesis advisor) / Johnson, Roger (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2012
136911-Thumbnail Image.png
Description
Intracranial aneurysms are blood \u2014filled sacs along the blood vessels in the brain. These aneurysms can be particularly dangerous due to difficulty in detection and potential lifethreatening outcome. When these aneurysms are detected, there are few treatment options to prevent rupture, one of which is endovascular stents. By placing a

Intracranial aneurysms are blood \u2014filled sacs along the blood vessels in the brain. These aneurysms can be particularly dangerous due to difficulty in detection and potential lifethreatening outcome. When these aneurysms are detected, there are few treatment options to prevent rupture, one of which is endovascular stents. By placing a stent across the parent vessel, blood flow can be diverted from the aneurysm. Reduced flow reduces the chance of rupture and promotes clotting within the aneurysm. In this study, hemodynamics in idealized basilar tip aneurysm models were investigated at three flow rates using particle imaging velocimetry (PIV). Two models were created with increasing dome size (4mm vs 6mm), and constant dome-to-neck ratio (3:2) and parent vessel contact angle to represent growing aneurysm. With the pulsatile flow, data is acquired at three separate points in the cardiac cycle. Both of the models were studied untreated, treated with Enterprise stent and treated with Pipeline stent. Enterprise stent was developed mainly for structural support while the Pipeline stent was developed as a flow diverter. Due to target functions of the stents, Enterprise stent is more porous than the Pipeline stent. Hemodynamics were studied using a stereo particle image velocimetry technique. The flow in models was characterized by neck and aneurysmal RMS velocity, neck and aneurysm kinetic energy, cross neck flow. It was found that both of the stents are capable diverting flow. Enterprise reduced aneurysmal RMS velocity in model 1 by 38.7% and in model 2 by 76.2%. Pipeline stent reduced aneurysmal RMS velocity in model 1 by 71.4% and in model 2 by 88.1%. Both reductions are data for 3ml/s at peak systole pulsatile flow. Data shows that the Pipeline stent is better than Enterprise stent at reducing flow to the aneurysm.
ContributorsChung, Hanseung (Author) / Frakes, David (Thesis director) / Caplan, Michael (Committee member) / Babiker, Haithem (Committee member) / Barrett, The Honors College (Contributor) / Economics Program in CLAS (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
141381-Thumbnail Image.png
Description

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the three-dimensional microclimate model ENVI-met. The model was validated using weather observations from the North Desert Village (NDV) landscape experiment, located on the Arizona State University's Polytechnic campus. The NDV is an ideal site to determine the model's input parameters, since it is a controlled environment recreating three prevailing residential landscape types in the Phoenix metropolitan area (mesic, oasis, and xeric).

After validation, we designed five neighborhoods with different urban forms that represent a realistic cross-section of typical residential neighborhoods in Phoenix. The scenarios follow the Local Climate Zone (LCZ) classification scheme after Stewart and Oke. We then combined the neighborhoods with three landscape designs and, using ENVI-met, simulated microclimate conditions for these neighborhoods for a typical summer day. Results were analyzed in terms of mid-afternoon air temperature distribution and variation, ventilation, surface temperatures, and shading. Findings show that advection is important for the distribution of within-design temperatures and that spatial differences in cooling are strongly related to solar radiation and local shading patterns. In mid-afternoon, dense urban forms can create local cool islands. Our approach suggests that the LCZ concept is useful for planning and design purposes.

ContributorsMiddel, Ariane (Author) / Hab, Kathrin (Author) / Brazel, Anthony J. (Author) / Martin, Chris A. (Author) / Guhathakurta, Subhrajit (Author)
Created2013-12-01
141382-Thumbnail Image.png
Description

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under current climate conditions and two climate change scenarios. We assessed the cooling effect of trees and cool roofs in a Phoenix residential neighborhood using the microclimate model ENVI-met. First, using xeric landscaping as a base, we created eight tree planting scenarios (from 0% canopy cover to 30% canopy cover) for the neighborhood to characterize the relationship between canopy cover and daytime cooling benefit of trees. In a second set of simulations, we ran ENVI-met for nine combined tree planting and landscaping scenarios (mesic, oasis, and xeric) with regular roofs and cool roofs under current climate conditions and two climate change projections. For each of the 54 scenarios, we compared average neighborhood mid-afternoon air temperatures and assessed the benefits of each heat mitigation measure under current and projected climate conditions. Findings suggest that the relationship between percent canopy cover and air temperature reduction is linear, with 0.14 °C cooling per percent increase in tree cover for the neighborhood under investigation. An increase in tree canopy cover from the current 10% to a targeted 25% resulted in an average daytime cooling benefit of up to 2.0 °C in residential neighborhoods at the local scale. Cool roofs reduced neighborhood air temperatures by 0.3 °C when implemented on residential homes. The results from this city-specific mitigation project will inform messaging campaigns aimed at engaging the city decision makers, industry, and the public in the green building and urban forestry initiatives.

ContributorsMiddel, Ariane (Author) / Chhetri, Nalini (Author) / Quay, Raymond (Author)
Created2015
141393-Thumbnail Image.png
Description

This study addresses a classic sustainability challenge—the tradeoff between water conservation and temperature amelioration in rapidly growing cities, using Phoenix, Arizona and Portland, Oregon as case studies. An urban energy balance model— LUMPS (Local-Scale Urban Meteorological Parameterization Scheme)—is used to represent the tradeoff between outdoor water use and nighttime cooling

This study addresses a classic sustainability challenge—the tradeoff between water conservation and temperature amelioration in rapidly growing cities, using Phoenix, Arizona and Portland, Oregon as case studies. An urban energy balance model— LUMPS (Local-Scale Urban Meteorological Parameterization Scheme)—is used to represent the tradeoff between outdoor water use and nighttime cooling during hot, dry summer months. Tradeoffs were characterized under three scenarios of land use change and three climate-change assumptions. Decreasing vegetation density reduced outdoor water use but sacrificed nighttime cooling. Increasing vegetated surfaces accelerated nighttime cooling, but increased outdoor water use by ~20%. Replacing impervious surfaces with buildings achieved similar improvements in nighttime cooling with minimal increases in outdoor water use; it was the most water-efficient cooling strategy. The fact that nighttime cooling rates and outdoor water use were more sensitive to land use scenarios than climate-change simulations suggested that cities can adapt to a warmer climate by manipulating land use.

ContributorsGober, Patricia (Author) / Middel, Ariane (Author) / Brazel, Anthony J. (Author) / Myint, Soe (Author) / Chang, Heejun (Author) / Duh, Jiunn-Der (Author) / House-Peters, Lily (Author)
Created2013-05-16
141400-Thumbnail Image.png
Description

Outdoor human comfort is determined for the remodelled downtown of Tempe, Arizona, USA, an acclaimed example of New Urbanist infill. The authors desired to know whether changes were accompanied by more comfortable conditions, especially in hot, dry summer months. The physiological equivalent temperature provided an assessment of year-round outdoor human

Outdoor human comfort is determined for the remodelled downtown of Tempe, Arizona, USA, an acclaimed example of New Urbanist infill. The authors desired to know whether changes were accompanied by more comfortable conditions, especially in hot, dry summer months. The physiological equivalent temperature provided an assessment of year-round outdoor human comfort. Building compactness and tree shade that became part of the changes in the downtown provided more overall daytime human comfort than open nearby streets; however some downtown sites were less comfortable at night, but below 40°C, a threshold for human comfort in this desert environment.

ContributorsCrewe, Katherine (Author) / Brazel, Anthony J. (Author) / Middel, Ariane (Author)
Created2016-06-01
141419-Thumbnail Image.png
Description

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University’s Tempe campus. During the course of 1

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University’s Tempe campus. During the course of 1 year, on selected clear calm days representative of each season, we conducted hourly meteorological transects from 7:00 a.m. to 6:00 p.m. and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on a semantic differential 9-point scale, increasing thermal comfort in all seasons except winter. Shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shades are equally efficient in hot dry climates. Globe temperature explained 51 % of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors included adaptation, thermal comfort vote, thermal preference, gender, season, and time of day. A regression of subjective thermal sensation on physiological equivalent temperature yielded a neutral temperature of 28.6 °C. The acceptable comfort range was 19.1 °C–38.1 °C with a preferred temperature of 20.8 °C. Respondents exposed to above neutral temperature felt more comfortable if they had been in air-conditioning 5 min prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas to reduce thermal stress.

ContributorsMiddel, Ariane (Author) / Selover, Nancy (Author) / Hagen, Bjorn (Author) / Chhetri, Nalini (Author)
Created2016-05-18