Matching Items (24)
Description
Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use

Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use them for developing software for laboratory automation systems. This thesis proposes an architecture that is based on existing software architectural paradigms and is specifically tailored to developing software for a laboratory automation system. The architecture is based on fairly autonomous software components that can be distributed across multiple computers. The components in the architecture make use of asynchronous communication methodologies that are facilitated by passing messages between one another. The architecture can be used to develop software that is distributed, responsive and thread-safe. The thesis also proposes a framework that has been developed to implement the ideas proposed by the architecture. The framework is used to develop software that is scalable, distributed, responsive and thread-safe. The framework currently has components to control very commonly used laboratory automation devices such as mechanical stages, cameras, and also to do common laboratory automation functionalities such as imaging.
ContributorsKuppuswamy, Venkataramanan (Author) / Meldrum, Deirdre (Thesis advisor) / Collofello, James (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Johnson, Roger (Committee member) / Arizona State University (Publisher)
Created2012
151177-Thumbnail Image.png
Description
Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of

Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of single cells. Yet to date, no live-cell compatible version of the technology exists. In this thesis, a microfluidic chip with the ability to rotate live single cells in hydrodynamic microvortices about an axis parallel to the optical focal plane has been demonstrated. The chip utilizes a novel 3D microchamber design arranged beneath a main channel creating flow detachment into the chamber, producing recirculating flow conditions. Single cells are flowed through the main channel, held in the center of the microvortex by an optical trap, and rotated by the forces induced by the recirculating fluid flow. Computational fluid dynamics (CFD) was employed to optimize the geometry of the microchamber. Two methods for the fabrication of the 3D microchamber were devised: anisotropic etching of silicon and backside diffuser photolithography (BDPL). First, the optimization of the silicon etching conditions was demonstrated through design of experiment (DOE). In addition, a non-conventional method of soft-lithography was demonstrated which incorporates the use of two positive molds, one of the main channel and the other of the microchambers, compressed together during replication to produce a single ultra-thin (<200 µm) negative used for device assembly. Second, methods for using thick negative photoresists such as SU-8 with BDPL have been developed which include a new simple and effective method for promoting the adhesion of SU-8 to glass. An assembly method that bonds two individual ultra-thin (<100 µm) replications of the channel and the microfeatures has also been demonstrated. Finally, a pressure driven pumping system with nanoliter per minute flow rate regulation, sub-second response times, and < 3% flow variability has been designed and characterized. The fabrication and assembly of this device is inexpensive and utilizes simple variants of conventional microfluidic fabrication techniques, making it easily accessible to the single cell analysis community.
ContributorsMyers, Jakrey R (Author) / Meldrum, Deirdre (Thesis advisor) / Johnson, Roger (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2012
130342-Thumbnail Image.png
Description
Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D,

Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria.
Methodology
We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure.
Principal Findings
We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations.
Conclusions
Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the value of automated quantitative 3D nuclear morphometry as an objective tool to enable development of sensitive and specific nuclear grade classification in breast cancer diagnosis.
Created2012-01-05
132410-Thumbnail Image.png
Description
This study examined whether cortisol changes caused by examination stress are more associated with acute psychological state or physical symptoms of stress. Participants’ salivary cortisol was assayed before and after taking a final examination, and a survey was administered to assess their psychological state for depression, tension, and fatigue, as

This study examined whether cortisol changes caused by examination stress are more associated with acute psychological state or physical symptoms of stress. Participants’ salivary cortisol was assayed before and after taking a final examination, and a survey was administered to assess their psychological state for depression, tension, and fatigue, as well as the degree to which they experienced a variety of physical symptoms. Physical symptoms, tension, and depression were found to positively correlate with changes in cortisol across the examination period with depression showing the strongest correlation. No correlation was observed between fatigue and changes in cortisol during the examination period. Additionally, physical symptoms were found to positively correlate with average cortisol across the examination period while depression and fatigue were found to negatively correlate with average cortisol across the examination period. No correlation was observed between tension and average cortisol during the examination period. None of these findings were statistically significant, which suggests that no relationship exists between cortisol and acute psychological state or physical symptoms of stress; however, the study was limited by its small sample size and several potentially confounding variables, making it difficult to draw any firm conclusions.
ContributorsSchlichting, Matthew James (Author) / Nesse, Randolph (Thesis director) / Doane, Leah (Committee member) / Trumble, Benjamin (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
168733-Thumbnail Image.png
Description
This dissertation describes a series of four studies on cognitive aging, working memory, and cognitive flexibility in dogs (Canis lupus familiaris) and their wild relatives. In Chapters 2 and 3, I designed assessments for age-related cognitive deficits in pet dogs which can be deployed rapidly using inexpensive and accessible materials.

This dissertation describes a series of four studies on cognitive aging, working memory, and cognitive flexibility in dogs (Canis lupus familiaris) and their wild relatives. In Chapters 2 and 3, I designed assessments for age-related cognitive deficits in pet dogs which can be deployed rapidly using inexpensive and accessible materials. These novel tests can be easily implemented by owners, veterinarians, and clinicians and therefore, may improve care for elderly dogs by aiding in the diagnosis of dementia. In addition, these widely deployable tests may facilitate the use of dementia in pet dogs as a naturally occurring model of Alzheimer’s Disease in humans.In Chapters 4 and 5, I modified one of these tests to demonstrate for the first time that coyotes (Canis latrans) and wolves (Canis lupus lupus) develop age-related deficits in cognitive flexibility. This was an important first step towards differentiating between the genetic and environmental components of dementia in dogs and in turn, humans. Unexpectedly, I also detected cognitive deficits in young, adult dogs and wolves but not coyotes. These finding add to a recent shift in understanding cognitive development in dogs which may improve cognitive aging tests as well as training, care, and use of working and pet dogs. These findings also suggest that the ecology of coyotes may select for flexibility earlier in development. In Chapter 5, I piloted the use of the same cognitive flexibility test for red and gray foxes so that future studies may test for lifespan changes in the cognition of small-bodied captive canids. More broadly, this paradigm may accommodate physical and behavioral differences between diverse pet and captive animals. In Chapters 4 and 5, I examined which ecological traits drive the evolution of behavioral flexibility and in turn, species resilience. I found that wolves displayed less flexibility than dogs and coyotes suggesting that species which do not rely heavily on unstable resources may be ill-equipped to cope with human habitat modification. Ultimately, this comparative work may help conservation practitioners to identify and protect species that cannot cope with rapid and unnatural environmental change.
ContributorsVan Bourg, Joshua (Author) / Wynne, Clive D (Thesis advisor) / Aktipis, C. Athena (Committee member) / Gilby, Ian C (Committee member) / Young, Julie K (Committee member) / Arizona State University (Publisher)
Created2022
156224-Thumbnail Image.png
Description
Evolution is the foundation of biology, yet it remains controversial even among college biology students. Acceptance of evolution is important for students if we want them to incorporate evolution into their scientific thinking. However, students’ religious beliefs are a consistent barrier to their acceptance of evolution due to a perceived

Evolution is the foundation of biology, yet it remains controversial even among college biology students. Acceptance of evolution is important for students if we want them to incorporate evolution into their scientific thinking. However, students’ religious beliefs are a consistent barrier to their acceptance of evolution due to a perceived conflict between religion and evolution. Using pre-post instructional surveys of students in introductory college biology, Study 1 establishes instructional strategies that can be effective for reducing students' perceived conflict between religion and evolution. Through interviews and qualitative analyses, Study 2 documents how instructors teaching evolution at public universities may be resistant towards implementing strategies that can reduce students' perceived conflict, perhaps because of their own lack of religious beliefs and lack of training and awareness about students' conflict with evolution. Interviews with religious students in Study 3 reveals that religious college biology students can perceive their instructors as unfriendly towards religion which can negatively impact these students' perceived conflict between religion and evolution. Study 4 explores how instructors at Christian universities, who share the same Christian backgrounds as their students, do not struggle with implementing strategies that reduce students' perceived conflict between religion and evolution. Cumulatively, these studies reveal a need for a new instructional framework for evolution education that takes into account the religious cultural difference between instructors who are teaching evolution and students who are learning evolution. As such, a new instructional framework is then described, Religious Cultural Competence in Evolution Education (ReCCEE), that can help instructors teach evolution in a way that can reduce students' perceived conflict between religion and evolution, increase student acceptance of evolution, and create more inclusive college biology classrooms for religious students.
ContributorsBarnes, Maryann Elizabeth (Author) / Brownell, Sara (Thesis advisor) / Nesse, Randolph (Committee member) / Collins, James (Committee member) / Husman, Jenefer (Committee member) / Maienschein, Jane (Committee member) / Arizona State University (Publisher)
Created2018
157836-Thumbnail Image.png
Description
ABSTRACT

Domestic dogs have assisted humans for millennia. However, the extent to which these helpful behaviors are prosocially motivated remains unclear. To assess the propensity of pet dogs to spontaneously and actively rescue distressed humans, this study tested whether sixty pet dogs would release their seemingly trapped owners from a large

ABSTRACT

Domestic dogs have assisted humans for millennia. However, the extent to which these helpful behaviors are prosocially motivated remains unclear. To assess the propensity of pet dogs to spontaneously and actively rescue distressed humans, this study tested whether sixty pet dogs would release their seemingly trapped owners from a large box. To examine the causal mechanisms that shaped this behavior, the readiness of each dog to open the box was tested in three conditions: 1) the owner sat in the box and called for help (“Distress” test), 2) an experimenter placed high-value food rewards in the box (“Food” test), and 3) the owner sat in the box and calmly read aloud (“Reading” test).

Dogs were as likely to release their distressed owner as to retrieve treats from inside the box, indicating that rescuing an owner may be a highly rewarding action for dogs. After accounting for ability, dogs released the owner more often when the owner called for help than when the owner read aloud calmly. In addition, opening latencies decreased with test number in the Distress test but not the Reading test. Thus, rescuing the owner could not be attributed solely to social facilitation, stimulus enhancement, or social contact-seeking behavior.

Dogs displayed more stress behaviors in the Distress test than in the Reading test, and stress scores decreased with test number in the Reading test but not in the Distress test. This evidence of emotional contagion supports the hypothesis that rescuing the distressed owner was an empathetically-motivated prosocial behavior. Success in the Food task and previous (in-home) experience opening objects were both strong predictors of releasing the owner. Thus, prosocial behavior tests for dogs should control for physical ability and previous experience.
ContributorsVan Bourg, Joshua Lazar (Author) / Wynne, Clive D (Thesis advisor) / Gilby, Ian C (Committee member) / Aktipis, C. Athena (Committee member) / Arizona State University (Publisher)
Created2019
129261-Thumbnail Image.png
Description

Most measures of depression severity are based on the number of reported symptoms, and threshold scores are often used to classify individuals as healthy or depressed. This method – and research results based on it – are valid if depression is a single condition, and all symptoms are equally good

Most measures of depression severity are based on the number of reported symptoms, and threshold scores are often used to classify individuals as healthy or depressed. This method – and research results based on it – are valid if depression is a single condition, and all symptoms are equally good severity indicators. Here, we review a host of studies documenting that specific depressive symptoms like sad mood, insomnia, concentration problems, and suicidal ideation are distinct phenomena that differ from each other in important dimensions such as underlying biology, impact on impairment, and risk factors. Furthermore, specific life events predict increases in particular depression symptoms, and there is evidence for direct causal links among symptoms. We suggest that the pervasive use of sum-scores to estimate depression severity has obfuscated crucial insights and contributed to the lack of progress in key research areas such as identifying biomarkers and more efficacious antidepressants. The analysis of individual symptoms and their causal associations offers a way forward. We offer specific suggestions with practical implications for future research.

ContributorsFried, Eiko I. (Author) / Nesse, Randolph (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-04-06
129438-Thumbnail Image.png
Description

Microbes in the gastrointestinal tract are under selective pressure to manipulate host eating behavior to increase their fitness, sometimes at the expense of host fitness. Microbes may do this through two potential strategies: (i) generating cravings for foods that they specialize on or foods that suppress their competitors, or (ii)

Microbes in the gastrointestinal tract are under selective pressure to manipulate host eating behavior to increase their fitness, sometimes at the expense of host fitness. Microbes may do this through two potential strategies: (i) generating cravings for foods that they specialize on or foods that suppress their competitors, or (ii) inducing dysphoria until we eat foods that enhance their fitness. We review several potential mechanisms for microbial control over eating behavior including microbial influence on reward and satiety pathways, production of toxins that alter mood, changes to receptors including taste receptors, and hijacking of the vagus nerve, the neural axis between the gut and the brain. We also review the evidence for alternative explanations for cravings and unhealthy eating behavior. Because microbiota are easily manipulatable by prebiotics, probiotics, antibiotics, fecal transplants, and dietary changes, altering our microbiota offers a tractable approach to otherwise intractable problems of obesity and unhealthy eating.

ContributorsAlcock, Joe (Author) / Maley, Carlo C. (Author) / Aktipis, C. Athena (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-10-01
128691-Thumbnail Image.png
Description

Although emerging evidence indicates that deep-sea water contains an untapped reservoir of high metabolic and genetic diversity, this realm has not been studied well compared with surface sea water. The study provided the first integrated meta-genomic and -transcriptomic analysis of the microbial communities in deep-sea water of North Pacific Ocean.

Although emerging evidence indicates that deep-sea water contains an untapped reservoir of high metabolic and genetic diversity, this realm has not been studied well compared with surface sea water. The study provided the first integrated meta-genomic and -transcriptomic analysis of the microbial communities in deep-sea water of North Pacific Ocean. DNA/RNA amplifications and simultaneous metagenomic and metatranscriptomic analyses were employed to discover information concerning deep-sea microbial communities from four different deep-sea sites ranging from the mesopelagic to pelagic ocean. Within the prokaryotic community, bacteria is absolutely dominant (~90%) over archaea in both metagenomic and metatranscriptomic data pools. The emergence of archaeal phyla Crenarchaeota, Euryarchaeota, Thaumarchaeota, bacterial phyla Actinobacteria, Firmicutes, sub-phyla Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria, and the decrease of bacterial phyla Bacteroidetes and Alphaproteobacteria are the main composition changes of prokaryotic communities in the deep-sea water, when compared with the reference Global Ocean Sampling Expedition (GOS) surface water. Photosynthetic Cyanobacteria exist in all four metagenomic libraries and two metatranscriptomic libraries. In Eukaryota community, decreased abundance of fungi and algae in deep sea was observed. RNA/DNA ratio was employed as an index to show metabolic activity strength of microbes in deep sea. Functional analysis indicated that deep-sea microbes are leading a defensive lifestyle.

ContributorsWu, Jieying (Author) / Gao, Weimin (Author) / Johnson, Roger (Author) / Zhang, Weiwen (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2013-10-11