Matching Items (59)
133704-Thumbnail Image.png
Description
In response to a national call within STEM to increase diversity within the sciences, there has been a growth in science education research aimed at increasing participation of underrepresented groups in science, such as women and ethnic/racial minorities. However, an underexplored underrepresented group in science are religious students. Though 82%

In response to a national call within STEM to increase diversity within the sciences, there has been a growth in science education research aimed at increasing participation of underrepresented groups in science, such as women and ethnic/racial minorities. However, an underexplored underrepresented group in science are religious students. Though 82% of the United States population is religiously affiliated, only 52% of scientists are religious (Pew, 2009). Even further, only 32% of biologists are religious, with 25% identifying as Christian (Pew, 2009; Ecklund, 2007). One reason as to why Christian individuals are underrepresented in biology is because faculty may express biases that affect students' ability to persist in the field of biology. In this study, we explored how revealing a Christian student's religious identity on science graduate application would impact faculty's perception of the student during the biology graduate application process. We found that faculty were significantly more likely to perceive the student who revealed their religious identity to be less competent, hirable, likeable, and faculty would be less likely to mentor the student. Our study informs upon possible reasons as to why there is an underrepresentation of Christians in science. This further suggests that bias against Christians must be addressed in order to avoid real-world, negative treatment of Christians in science.
ContributorsTruong, Jasmine Maylee (Author) / Brownell, Sara (Thesis director) / Gaughan, Monica (Committee member) / Barnes, Liz (Committee member) / School of Life Sciences (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134485-Thumbnail Image.png
Description
Learning student names has been promoted as an inclusive classroom practice, but it is unknown whether students value having their names known by an instructor. We explored this question in the context of a high-enrollment active-learning undergraduate biology course. Using surveys and semistructured interviews, we investigated whether students perceived that

Learning student names has been promoted as an inclusive classroom practice, but it is unknown whether students value having their names known by an instructor. We explored this question in the context of a high-enrollment active-learning undergraduate biology course. Using surveys and semistructured interviews, we investigated whether students perceived that instructors know their names, the importance of instructors knowing their names, and how instructors learned their names. We found that, while only 20% of students perceived their names were known in previous high-enrollment biology classes, 78% of students perceived that an instructor of this course knew their names. However, instructors only knew 53% of names, indicating that instructors do not have to know student names in order for students to perceive that their names are known. Using grounded theory, we identified nine reasons why students feel that having their names known is important. When we asked students how they perceived instructors learned their names, the most common response was instructor use of name tents during in-class discussion. These findings suggest that students can benefit from perceiving that instructors know their names and name tents could be a relatively easy way for students to think that instructors know their names. Academic self-concept is one's perception of his or her ability in an academic domain compared to other students. As college biology classrooms transition from lecturing to active learning, students interact more with each other and are likely comparing themselves more to students in the class. Student characteristics, such as gender and race/ethnicity, can impact the level of academic self-concept, however this has been unexplored in the context of undergraduate biology. In this study, we explored whether student characteristics can affect academic self-concept in the context of a college physiology course. Using a survey, students self-reported how smart they perceived themselves in the context of physiology compared to the whole class and compared to the student they worked most closely with in class. Using logistic regression, we found that males and native English speakers had significantly higher academic self-concept compared to the whole class compared with females and non-native English speakers, respectively. We also found that males and non-transfer students had significantly higher academic self-concept compared to the student they worked most closely with in class compared with females and transfer students, respectively. Using grounded theory, we identified ten distinct factors that influenced how students determined whether they are more or less smart than their groupmate. Finally, we found that students were more likely to report participating less than their groupmate if they had a lower academic self-concept. These findings suggest that student characteristics can influence students' academic self-concept, which in turn may influence their participation in small group discussion.
ContributorsKrieg, Anna Florence (Author) / Brownell, Sara (Thesis director) / Stout, Valerie (Committee member) / Cooper, Katelyn (Committee member) / School of Life Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135232-Thumbnail Image.png
Description
Course-Based Undergraduate Research Experiences, or CUREs have become an increasingly popular way to integrate research opportunities into the undergraduate biology curriculum. Unlike traditional cookbook labs which provide students with a set experimental design and known outcome, CUREs offer students the opportunity to participate in novel and interesting research that is

Course-Based Undergraduate Research Experiences, or CUREs have become an increasingly popular way to integrate research opportunities into the undergraduate biology curriculum. Unlike traditional cookbook labs which provide students with a set experimental design and known outcome, CUREs offer students the opportunity to participate in novel and interesting research that is of interest to the greater biology community. While CUREs have been championed as a way to provide more students with the opportunity to experience, it is unclear whether students benefit differently from participating in different CURE with different structural elements. In this study we focused in on one proposed element of a CURE, collaboration, to determine whether student's perception of this concept change over the course of a CURE and whether it differs among students enrolled in different CUREs. We analyzed pre and post open-ended surveys asking the question "Why might collaboration be important in science?" in two CUREs with different structures of collaboration. We also compared CURE student responses to the responses of senior honors thesis students who had been conducting authentic research. Five themes emerged in response to students' conceptions of collaboration. Comparing two CURE courses, we found that students' conceptions of collaboration were varied within each individual CURE, as well as what students were leaving with compared to the other CURE course. Looking at how student responses compared between 5 different themes, including "Different Perspectives", "Validate/Verify Results", "Compare Results", "Requires Different Expertise", and "Compare results", students appeared to be thinking about collaboration in distinct different ways by lack of continuity in the amount of students discussing each of these among the classes. In addition, we found that student responses in each of the CURE courses were not significantly different for any of the themes except "Different Expertise" compared to the graduating seniors. However, due to the small (n) that the graduating seniors group had, 22, compared to each of the CURE classes composing of 155 and 98 students, this comparison must be taken in a preliminary manner. Overall, students thought differently about collaboration between different CUREs. Still, a gap filling what it means to "collaborate", and whether the structures of CUREs are effective to portray collaboration are still necessary to fully elaborate on this paper's findings.
ContributorsWassef, Cyril Alexander (Author) / Brownell, Sara (Thesis director) / Stout, Valerie (Committee member) / Cooper, Katelyn (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
189328-Thumbnail Image.png
Description
Evolution is a key feature of undergraduate biology education: the AmericanAssociation for the Advancement of Science (AAAS) has identified evolution as one of the five core concepts of biology, and it is relevant to a wide array of biology-related careers. If biology instructors want students to use evolution to address scientific challenges post-graduation,

Evolution is a key feature of undergraduate biology education: the AmericanAssociation for the Advancement of Science (AAAS) has identified evolution as one of the five core concepts of biology, and it is relevant to a wide array of biology-related careers. If biology instructors want students to use evolution to address scientific challenges post-graduation, students need to be able to apply evolutionary principles to real-life situations, and accept that the theory of evolution is the best scientific explanation for the unity and diversity of life on Earth. In order to help students progress on both fronts, biology education researchers need surveys that measure evolution acceptance and assessments that measure students’ ability to apply evolutionary concepts. This dissertation improves the measurement of student understanding and acceptance of evolution by (1) developing a novel Evolutionary Medicine Assessment that measures students’ ability to apply the core principles of Evolutionary Medicine to a variety of health-related scenarios, (2) reevaluating existing measures of student evolution acceptance by using student interviews to assess response process validity, and (3) correcting the validity issues identified on the most widely-used measure of evolution acceptance - the Measure of Acceptance of the Theory of Evolution (MATE) - by developing and validating a revised version of this survey: the MATE 2.0.
ContributorsMisheva, Anastasia Taya (Author) / Brownell, Sara (Thesis advisor) / Barnes, Elizabeth (Committee member) / Collins, James (Committee member) / Cooper, Katelyn (Committee member) / Sterner, Beckett (Committee member) / Arizona State University (Publisher)
Created2023
166198-Thumbnail Image.png
Description
People with disabilities are underrepresented in the Science, Technology, Engineering, and Math (STEM) workforce (NSF, 2016). One way to increase representation of people with disabilities in STEM fields is by supporting students with disabilities (SWDs) at the undergraduate level. In undergraduate education in the United States, SWDs represent approximately 19%

People with disabilities are underrepresented in the Science, Technology, Engineering, and Math (STEM) workforce (NSF, 2016). One way to increase representation of people with disabilities in STEM fields is by supporting students with disabilities (SWDs) at the undergraduate level. In undergraduate education in the United States, SWDs represent approximately 19% of the undergraduate community (U.S. Census Bureau, 2021). However, SWDs have lower graduation and retention rates. This is particularly true for STEM majors, where SWDs make up about 9% of the STEM community in higher education. The AAC&U has defined a list of High-Impact Practices (HIPs), which are active learning practices and experiences that encourage deep learning by promoting student engagement, and could ultimately support student retention (AAC&U). To date, student-centered disability research has not explored the extent to which SWDs participate in HIPs. We hypothesized that SWDs are less likely than students without disabilities to be involved in HIPs and that students who identify as having severe disabilities would participate in HIPs at lower rates. In this study, we conducted a national survey to examine involvement in HIPs for students with disabilities in STEM. We found that disability status significantly affects the probability of participation in undergraduate research, but is not a significant factor for participation in most other HIPs. We also found that self-reported severity of disability did not significantly impact participation in HIPs, though we observed trends that students reporting higher severity generally reported lower participation in HIPs. Our open-ended responses did indicate that SWDs still faced barriers to participation in HIPs.
ContributorsPais, Danielle (Author) / Brownell, Sara (Thesis director) / Cooper, Katelyn (Committee member) / Barrett, The Honors College (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05
165130-Thumbnail Image.png
Description

There is increasing interest in understanding how active learning affects students’ mental health as science courses transition from traditional lecture to active learning. Prior research has found that active learning can both alleviate and exacerbate undergraduate mental health problems. Existing studies have only examined the relationship between active learning and

There is increasing interest in understanding how active learning affects students’ mental health as science courses transition from traditional lecture to active learning. Prior research has found that active learning can both alleviate and exacerbate undergraduate mental health problems. Existing studies have only examined the relationship between active learning and anxiety. No studies have examined the relationship between active learning and undergraduate depression. To address this gap in the literature, we conducted hour-long exploratory interviews with 29 students with depression who had taken active learning science courses across six U.S. institutions. We probed what aspects of active learning practices exacerbate or alleviate depressive symptoms and how students’ depression affects their experiences in active learning. We found that aspects of active learning practices exacerbate and alleviate students’ depressive symptoms, and depression negatively impacts students’ experiences in active learning. The underlying aspects of active learning practices that impact students’ depression fall into four overarching categories: inherently social, inherently engaging, opportunities to compare selves to others, and opportunities to validate or invalidate intelligence. We hope that by better understanding the experiences of undergraduates with depression in active learning courses we can create more inclusive learning environments for these students.

ContributorsAraghi, Tala (Author) / Cooper, Katelyn (Thesis director) / Brownell, Sara (Committee member) / Busch, Carly (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
165842-Thumbnail Image.png
Description
Mounting evidence suggests that gender biases favoring men and racial biases favoring whites and Asians contribute to the underrepresentation of women and underrepresented minorities (URM) in science, technology, engineering, and mathematics (STEM). Systemic issues caused by gender and racial biases create barriers that prevent women and URM from entering STEM

Mounting evidence suggests that gender biases favoring men and racial biases favoring whites and Asians contribute to the underrepresentation of women and underrepresented minorities (URM) in science, technology, engineering, and mathematics (STEM). Systemic issues caused by gender and racial biases create barriers that prevent women and URM from entering STEM from the structure of education to admission or promotions to higher-level positions. One of these barriers is unconscious biases that impact the quality of letters of recommendation for women and URM and their success in application processes to higher education. Though letters of recommendation provide a qualitative aspect to an application and can reveal the typical performance of the applicant, research has found that the unstructured nature of the traditional recommendation letter allows for gender and racial bias to impact the quality of letters of recommendation. Standardized letters of recommendation have been implemented in various fields and have been found to reduce the presence of bias in recommendation letters. This paper reviews the trends seen across the literature regarding equity in the use of letters of recommendation for undergraduates.
ContributorsKolath, Nina (Author) / Brownell, Sara (Thesis director) / Goodwin, Emma (Committee member) / Barrett, The Honors College (Contributor) / School of Criminology and Criminal Justice (Contributor) / School of Life Sciences (Contributor)
Created2022-05
Description

Mental health conditions can impact college students’ social and academic achievements. As such, students may disclose mental illnesses on medical school applications. Yet, no study has investigated to what extent disclosure of a mental health condition impacts medical school acceptance. We designed an audit study to address this gap. We

Mental health conditions can impact college students’ social and academic achievements. As such, students may disclose mental illnesses on medical school applications. Yet, no study has investigated to what extent disclosure of a mental health condition impacts medical school acceptance. We designed an audit study to address this gap. We surveyed 99 potential admissions committee members from at least 43 unique M.D.-granting schools in the U.S. Participants rated a fictitious portion of a medical school application on acceptability, competence, and likeability. They were randomly assigned to a condition: an application that explained a low semester GPA due to a mental health condition, an application that explained a low semester GPA due to a physical health condition, or an application that had a low semester GPA but did not describe any health condition. Using ANOVAs, multinomial regression, and open-coding, we found that committee members do not rate applications lower when a mental health condition is revealed. When asked about their concerns regarding the application, 27.0% of participants who received an application that revealed a mental health condition mentioned it as a concern; 14.7% of participants who received an application that revealed a physical health condition mentioned it as a concern. Committee members were also asked about when revealing a mental health condition would be beneficial and when it would be detrimental. This work indicates that medical school admissions committee members do not exhibit a bias towards mental health conditions and provides recommendations on how to discuss mental illness on medical school applications.

ContributorsAbraham, Anna (Author) / Brownell, Sara (Thesis director) / Cooper, Katelyn (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2022-05
193028-Thumbnail Image.png
Description
Similar-identity role models, including instructors, can benefit science undergraduates by enhancing their self-efficacy and sense of belonging. However, for students to have similar-identity role models based on identities that can be hidden, instructors need to disclose their identities. For concealable stigmatized identities (CSIs) – identities that can be hidden and

Similar-identity role models, including instructors, can benefit science undergraduates by enhancing their self-efficacy and sense of belonging. However, for students to have similar-identity role models based on identities that can be hidden, instructors need to disclose their identities. For concealable stigmatized identities (CSIs) – identities that can be hidden and carry negative stereotypes – the impersonal and apolitical culture cultivated in many science disciplines likely makes instructor CSI disclosure unlikely. This dissertation comprises five studies I conducted to assess the presence of instructor role models with CSIs in undergraduate science classrooms and evaluate the impact on undergraduates of instructor CSI disclosure. I find that science instructors report CSIs at lower rates than undergraduates and typically keep these identities concealed. Additionally, I find that women instructors are more likely to disclose their CSIs to students compared to men. To assess the impact of instructor CSI disclosure on undergraduates, I report on findings from a descriptive exploratory study and a controlled field experiment in which an instructor reveals an LGBTQ+ identity. Undergraduates, especially those who also identify as LGBTQ+, benefit from instructor LGBTQ+ disclosure. Additionally, the majority of undergraduate participants agree that an instructor revealing an LGBTQ+ identity during class is appropriate. Together, the results presented in this dissertation highlight the current lack of instructor role models with CSIs and provide evidence of student benefits that may encourage instructors to reveal CSIs to undergraduates and subsequently provide much-needed role models. I hope this work can spark self-reflection among instructors to consider revealing CSIs to students and challenge the assumption that science environments should be devoid of personal identities.
ContributorsBusch, Carly Anne (Author) / Cooper, Katelyn (Thesis advisor) / Brownell, Sara (Thesis advisor) / Collins, James (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2024
156658-Thumbnail Image.png
Description
Education through field exploration is fundamental in geoscience. But not all students enjoy equal access to field-based learning because of time, cost, distance, ability, and safety constraints. At the same time, technological advances afford ever more immersive, rich, and student-centered virtual field experiences. Virtual field trips may be the only

Education through field exploration is fundamental in geoscience. But not all students enjoy equal access to field-based learning because of time, cost, distance, ability, and safety constraints. At the same time, technological advances afford ever more immersive, rich, and student-centered virtual field experiences. Virtual field trips may be the only practical options for most students to explore pedagogically rich but inaccessible places. A mixed-methods research project was conducted on an introductory and an advanced geology class to explore the implications of learning outcomes of in-person and virtual field-based instruction at Grand Canyon National Park. The study incorporated the Great Unconformity in the Grand Canyon, a 1.2 billion year break in the rock record; the Trail of Time, an interpretive walking timeline; and two immersive, interactive virtual field trips (iVFTs). The in-person field trip (ipFT) groups collectively explored the canyon and took an instructor-guided inquiry hike along the interpretive Trail of Time from rim level, while iVFT students individually explored the canyon and took a guided-inquiry virtual tour of Grand Canyon geology from river level. High-resolution 360° spherical images anchor the iVFTs and serve as a framework for programmed overlays that enable interactivity and allow the iVFT to provide feedback in response to student actions. Students in both modalities received pre- and post-trip Positive and Negative Affect Schedules (PANAS). The iVFT students recorded pre- to post-trip increases in positive affect (PA) scores and decreases in negative (NA) affect scores, representing an affective state conducive to learning. Pre- to post-trip mean scores on concept sketches used to assess visualization and geological knowledge increased for both classes and modalities. However, the iVFT pre- to post-trip increases were three times greater (statistically significant) than the ipFT gains. Both iVFT and ipFT students scored 92-98% on guided-inquiry worksheets completed during the trips, signifying both met learning outcomes. Virtual field trips do not trump traditional in-person field work, but they can meet and/or exceed similar learning objectives and may replace an inaccessible or impractical in-person field trip.
ContributorsRuberto, Thomas (Author) / Semken, Steve (Thesis advisor) / Anbar, Ariel (Committee member) / Brownell, Sara (Committee member) / Arizona State University (Publisher)
Created2018