Matching Items (75)
Description
Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA

Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA from microorganisms in aqueous environments. An off-the-shelf membrane filter disc was embedded in a PDMS layer and sequentially bound with other PDMS channel layers. No leakage was observed during filtration. This device was validated by concentrating a large amount of cyanobacterium Synechocystis in simulated sample water with consistent performance across devices. After accumulating sufficient biomass on the filter, a sequential electrochemical lysing process was performed by applying 5VDC across the filter. This device was further evaluated by delivering several samples of differing concentrations of cyanobacterium Synechocystis then quantifying the DNA using real-time PCR. Lastly, an environmental sample was run through the device and the amount of photosynthetic microorganisms present in the water was determined. The major breakthroughs in this design are low energy demand, cheap materials, simple design, straightforward fabrication, and robust performance, together enabling wide-utility of similar chip-based devices for field-deployable operations in environmental micro-biotechnology.
ContributorsLecluse, Aurelie (Author) / Meldrum, Deirdre (Thesis advisor) / Chao, Joseph (Thesis advisor) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2011
Description
Single cell phenotypic heterogeneity studies reveal more information about the pathogenesis process than conventional bulk methods. Furthermore, investigation of the individual cellular response mechanism during rapid environmental changes can only be achieved at single cell level. By enabling the study of cellular morphology, a single cell three-dimensional (3D) imaging system

Single cell phenotypic heterogeneity studies reveal more information about the pathogenesis process than conventional bulk methods. Furthermore, investigation of the individual cellular response mechanism during rapid environmental changes can only be achieved at single cell level. By enabling the study of cellular morphology, a single cell three-dimensional (3D) imaging system can be used to diagnose fatal diseases, such as cancer, at an early stage. One proven method, CellCT, accomplishes 3D imaging by rotating a single cell around a fixed axis. However, some existing cell rotating mechanisms require either intricate microfabrication, and some fail to provide a suitable environment for living cells. This thesis develops a microvorterx chamber that allows living cells to be rotated by hydrodynamic alone while facilitating imaging access. In this thesis work, 1) the new chamber design was developed through numerical simulation. Simulations revealed that in order to form a microvortex in the side chamber, the ratio of the chamber opening to the channel width must be smaller than one. After comparing different chamber designs, the trapezoidal side chamber was selected because it demonstrated controllable circulation and met the imaging requirements. Microvortex properties were not sensitive to the chambers with interface angles ranging from 0.32 to 0.64. A similar trend was observed when chamber heights were larger than chamber opening. 2) Micro-particle image velocimetry was used to characterize microvortices and validate simulation results. Agreement between experimentation and simulation confirmed that numerical simulation was an effective method for chamber design. 3) Finally, cell rotation experiments were performed in the trapezoidal side chamber. The experimental results demonstrated cell rotational rates ranging from 12 to 29 rpm for regular cells. With a volumetric flow rate of 0.5 µL/s, an irregular cell rotated at a mean rate of 97 ± 3 rpm. Rotational rates can be changed by altering inlet flow rates.
ContributorsZhang, Wenjie (Author) / Frakes, David (Thesis advisor) / Meldrum, Deirdre (Thesis advisor) / Chao, Shih-hui (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2011
Description
Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use

Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use them for developing software for laboratory automation systems. This thesis proposes an architecture that is based on existing software architectural paradigms and is specifically tailored to developing software for a laboratory automation system. The architecture is based on fairly autonomous software components that can be distributed across multiple computers. The components in the architecture make use of asynchronous communication methodologies that are facilitated by passing messages between one another. The architecture can be used to develop software that is distributed, responsive and thread-safe. The thesis also proposes a framework that has been developed to implement the ideas proposed by the architecture. The framework is used to develop software that is scalable, distributed, responsive and thread-safe. The framework currently has components to control very commonly used laboratory automation devices such as mechanical stages, cameras, and also to do common laboratory automation functionalities such as imaging.
ContributorsKuppuswamy, Venkataramanan (Author) / Meldrum, Deirdre (Thesis advisor) / Collofello, James (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Johnson, Roger (Committee member) / Arizona State University (Publisher)
Created2012
151177-Thumbnail Image.png
Description
Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of

Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of single cells. Yet to date, no live-cell compatible version of the technology exists. In this thesis, a microfluidic chip with the ability to rotate live single cells in hydrodynamic microvortices about an axis parallel to the optical focal plane has been demonstrated. The chip utilizes a novel 3D microchamber design arranged beneath a main channel creating flow detachment into the chamber, producing recirculating flow conditions. Single cells are flowed through the main channel, held in the center of the microvortex by an optical trap, and rotated by the forces induced by the recirculating fluid flow. Computational fluid dynamics (CFD) was employed to optimize the geometry of the microchamber. Two methods for the fabrication of the 3D microchamber were devised: anisotropic etching of silicon and backside diffuser photolithography (BDPL). First, the optimization of the silicon etching conditions was demonstrated through design of experiment (DOE). In addition, a non-conventional method of soft-lithography was demonstrated which incorporates the use of two positive molds, one of the main channel and the other of the microchambers, compressed together during replication to produce a single ultra-thin (<200 µm) negative used for device assembly. Second, methods for using thick negative photoresists such as SU-8 with BDPL have been developed which include a new simple and effective method for promoting the adhesion of SU-8 to glass. An assembly method that bonds two individual ultra-thin (<100 µm) replications of the channel and the microfeatures has also been demonstrated. Finally, a pressure driven pumping system with nanoliter per minute flow rate regulation, sub-second response times, and < 3% flow variability has been designed and characterized. The fabrication and assembly of this device is inexpensive and utilizes simple variants of conventional microfluidic fabrication techniques, making it easily accessible to the single cell analysis community.
ContributorsMyers, Jakrey R (Author) / Meldrum, Deirdre (Thesis advisor) / Johnson, Roger (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2012
135560-Thumbnail Image.png
Description
This thesis explores and analyzes the emergence of for-profit stem cell clinics in the United States, specifically in the Phoenix metropolitan area. Stem cell therapy is an emerging field that has great potential in preventing or treating a number of diseases. Certain companies are currently researching the application of stem

This thesis explores and analyzes the emergence of for-profit stem cell clinics in the United States, specifically in the Phoenix metropolitan area. Stem cell therapy is an emerging field that has great potential in preventing or treating a number of diseases. Certain companies are currently researching the application of stem cells as therapeutics. At present the FDA has only approved one stem cell-based product; however, there are a number of companies currently offering stem cell therapies. In the past five years, most news articles discussing these companies offering stem cell treatments talk of clinics in other countries. Recently, there seems to be a number of stem cell clinics appearing in the United States. Using a web search engine, fourteen stem cell clinics were identified and analyzed in the Phoenix metropolitan area. Each clinic was analyzed by their four key characteristics: business operations, stem cell types, stem cell isolation methods, and their position with the FDA. Based off my analysis, most of the identified clinics are located in Scottsdale or Phoenix. Some of these clinics even share the same location as another medical practice. Each of the fourteen clinics treat more than one type of health condition. The stem clinics make use of four stem cell types and three different isolation methods to obtain the stem cells. The doctors running these clinics almost always treat health conditions outside of their expertise. Some of these clinics even claim they are not subject to FDA regulation.
ContributorsAmrelia, Divya Vikas (Author) / Brafman, David (Thesis director) / Frow, Emma (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136904-Thumbnail Image.png
Description
A major goal of the Center for Biosignatures Discovery Automation (CBDA) is to design a diagnostic tool that detects novel cancer biosignatures at the single-cell level. We designed the Single-cell QUantitative In situ Reverse Transcription-Polymerase Chain Reaction (SQUIRT-PCR) system by combining a two-photon laser lysis (2PLL) system with a

A major goal of the Center for Biosignatures Discovery Automation (CBDA) is to design a diagnostic tool that detects novel cancer biosignatures at the single-cell level. We designed the Single-cell QUantitative In situ Reverse Transcription-Polymerase Chain Reaction (SQUIRT-PCR) system by combining a two-photon laser lysis (2PLL) system with a microfluidic reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) platform. It is important to identify early molecular changes from intact tissues as prognosis for premalignant conditions and develop new molecular targets for prevention of cancer progression and improved therapies. This project analyzes RNA expression at the single-cell level and presents itself with two major challenges: (1) detecting low levels of RNA and (2) minimizing RNA absorption in the polydimethylsiloxane (PDMS) microfluidic channel. The first challenge was overcome by successfully detecting picogram (pg) levels of RNA using the Fluidigm (FD) BioMark™ HD System (Fluidigm Corporation, South San Francisco, CA) for RT-qPCR analysis. This technology incorporates a highly precise integrated fluidic circuit (IFC) that allows for high-throughput genetic screening using microarrays. The second challenge entailed collecting data from RNA flow-through samples that were passed through microfluidic channels. One channel was treated with a coating of polyethylene glycol (PEG) and the other remained untreated. Various flow-through samples were subjected to RT-qPCR and analyzed using the FD FLEXsix™ Gene Expression IFC. As predicted, the results showed that the treated PDMS channel absorbed less RNA than the untreated PDMS channel. Once the optimization of the PDMS microfluidic platform is complete, it will be implemented into the 2PLL system. This novel technology will be able to identify cell populations in situ and could have a large impact on cancer diagnostics.
ContributorsBlatt, Amy Elissa (Author) / Meldrum, Deirdre R. (Thesis director) / Tran, Thai (Committee member) / Chao, Joseph (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137491-Thumbnail Image.png
Description
Single cell heterogeneity plays an important role in the onset and progression of a variety of disease pathologies. One of the most notable examples of the impact of heterogeneity in the complexity of a disease is cancer. Traditionally, molecular analyses on cancer-related samples have been performed on bulk populations

Single cell heterogeneity plays an important role in the onset and progression of a variety of disease pathologies. One of the most notable examples of the impact of heterogeneity in the complexity of a disease is cancer. Traditionally, molecular analyses on cancer-related samples have been performed on bulk populations of cells, with the resultant data only representative of an average of the population, thereby concealing potentially relevant information about individual cells. Performing these studies at the single cell level is proposed to address this issue. However, current methods for the isolation and analysis of single cells often require specialized and expensive equipment that may be prohibitive to labs wishing to perform such analyses. Herein, a method for the isolation and gene expression analysis of single cells is described that (1) relies only on readily available, inexpensive materials, (2) is compatible with phase and fluorescent microscopy, and (3) allows for the ability to track specific cells throughout all measurements. This method utilizes random seeding of single cells on 72-well Terasaki plates (also called microtest plates) that have 20 µl, optically clear flat-bottomed wells in order to circumvent the need for specific hardware for cell isolation. Suspensions of the Barrett’s esophagus epithelial cell line CP-D stably expressing turboGFP and a related, GFP-negative BE cell line, CP-A, were prepared, seeded at a concentration of approximately 1-2 cells/well and incubated overnight. Wells containing single cells were visually identified using phase-contrast and fluorescent microscopy. Single cells were then lysed directly in the well, total RNA was isolated, and RT-qPCR was performed. RT-qPCR results reflected the ability to distinguish between turboGFP-expressing and non-expressing cells that matched previous identification by microscopy. These results indicate that this is a convenient and cost-effective method for studying gene expression in single cells.
ContributorsZiegler, Colleen Patricia (Author) / Chao, Joseph (Thesis director) / Tran, Thai (Committee member) / Yaron, Jordan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137396-Thumbnail Image.png
Description
Esophageal adenocarcinoma (EAC) is one of the most lethal and fastest growing cancers in the United States. Its onset is commonly triggered by metaplastic transformation of normal squamous esophageal epithelial cells to Barrett's esophagus (BE) cells in response to acid reflux. BE patients are believed to progress through non-dysplastic metaplasia

Esophageal adenocarcinoma (EAC) is one of the most lethal and fastest growing cancers in the United States. Its onset is commonly triggered by metaplastic transformation of normal squamous esophageal epithelial cells to Barrett's esophagus (BE) cells in response to acid reflux. BE patients are believed to progress through non-dysplastic metaplasia and increasing grades of dysplasia prior to EAC. Conventional cancer diagnostic tools rely on bulk-cell analyses that are incapable of identifying intratumoral heterogeneity or rare driver cells that play important roles in cancer progression. An improved single-cell method of cancer diagnosis would overcome this challenge by detecting cancer initiating cells before they progress into untreatable stages. In this study, using EAC as a model, we attempted to identify a more effective method of cancer diagnosis. We quantified the single- and bulk-cell mRNA expression of genes that have been proposed to be instrumental in the progression of EAC through BE. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) analysis was performed on human primary cells to measure the mRNA expression levels of BE- and EAC-associated genes. Our results showed high levels of heterogeneity of CDX2 and TFF3 at the single-cell resolution in human BE and EAC samples. Additionally, while expression of VEGF is generally low at the bulk-cell level, our results showed that a few, rare cells had significantly higher VEGF expression levels than the majority of cells in the EAC sample. In conclusion, we have affirmed that EAC cancer cells, as well as BE cells, show high levels of heterogeneity. Based on the VEGF gene expression pattern, single-cell analysis could potentially be more effective for identifying rare, but essential cells for cancer progression, which could then be targeted for treatment. Future studies will focus on analyzing human samples from thousands of normal and cancer subjects to validate the use of single-cell profiling in cancer.
ContributorsHaeuser, Kelsey Lynn (Author) / Tran, Thai (Thesis director) / Kelbauskas, Laimonas (Committee member) / Gao, Weimin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-12
148500-Thumbnail Image.png
Description

As life expectancy increases worldwide, age related diseases are becoming greater health concerns. One of the most prevalent age-related diseases in the United States is dementia, with Alzheimer’s disease (AD) being the most common form, accounting for 60-80% of cases. Genetics plays a large role in a person’s risk of

As life expectancy increases worldwide, age related diseases are becoming greater health concerns. One of the most prevalent age-related diseases in the United States is dementia, with Alzheimer’s disease (AD) being the most common form, accounting for 60-80% of cases. Genetics plays a large role in a person’s risk of developing AD. Familial AD, which makes up less than 1% of all AD cases, is caused by autosomal dominant gene mutations and has almost 100% penetrance. Genetic risk factors are believed to make up about 49%-79% of the risk in sporadic cases. Many different genetic risk factors for both familial and sporadic AD have been identified, but there is still much work to be done in the field of AD, especially in non-Caucasian populations. This review summarizes the three major genes responsible for familial AD, namely APP, PSEN1 and PSEN2. Also discussed are seven identified genetic risk factors for sporadic AD, single nucleotide polymorphisms in the APOE, ABCA7, NEDD9, CASS4, PTK2B, CLU, and PICALM genes. An overview of the main function of the proteins associated with the genes is given, along with the supposed connection to AD pathology.

ContributorsRichey, Alexandra Emmeline (Author) / Brafman, David (Thesis director) / Raman, Sreedevi (Committee member) / School of International Letters and Cultures (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
130342-Thumbnail Image.png
Description
Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D,

Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria.
Methodology
We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure.
Principal Findings
We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations.
Conclusions
Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the value of automated quantitative 3D nuclear morphometry as an objective tool to enable development of sensitive and specific nuclear grade classification in breast cancer diagnosis.
Created2012-01-05