Matching Items (78)
131560-Thumbnail Image.png
Description
Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate

Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate that spaceflight negatively impacts aspects of the immune system. In order to ensure astronaut safety during long term missions, it is important to study the phenotypic effects of the microgravity environment on a range of medically important microbial pathogens that might be encountered by the crew. This ground-based study uses the NASA-engineered Rotating Wall Vessel (RWV) bioreactor as a spaceflight analogue culture system to grow bacteria under low fluid shear forces relative to those encountered in microgravity, and interestingly, in the intestinal tract during infection. The culture environment in the RWV is commonly referred to as low shear modeled microgravity (LSMMG). In this study, we characterized the stationary phase stress response of the enteric pathogen, Salmonella enterica serovar Enteritidis (S. Enteritidis), to LSMMG culture. We showed that LSMMG enhanced the resistance of stationary phase cultures of S. Enteritidis to acid and thermal stressors, which differed from the LSSMG stationary phase response of the closely related pathovar, S. Typhimurium. Interestingly, LSMMG increased the ability of both S. Enteritidis and S. Typhimurium to adhere to, invade into, and survive within an in vitro 3-D intestinal co-culture model containing immune cells. Our results indicate that LSMMG regulates pathogenesis-related characteristics of S. Enteritidis in ways that may present an increased health risk to astronauts during spaceflight missions.
ContributorsKoroli, Sara (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, C. Mark (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133138-Thumbnail Image.png
Description
The International Space Station (ISS) utilizes recycled water for consumption, cleaning and air humidity control. The Environmental Control and Life Support Systems (ECLSS) have been rigorously tested at the NASA Johnson Space Center. Despite the advanced engineering of the water recovery system, bacterial biofilms have been recovered from this potable

The International Space Station (ISS) utilizes recycled water for consumption, cleaning and air humidity control. The Environmental Control and Life Support Systems (ECLSS) have been rigorously tested at the NASA Johnson Space Center. Despite the advanced engineering of the water recovery system, bacterial biofilms have been recovered from this potable water source. Microbial contamination of potable water poses a potential threat to crew members onboard the ISS. Because astronauts have been found to have compromised immune systems, bacterial strains that would not typically be considered a danger must be carefully studied to better understand the mechanisms enabling their survival, including polymicrobial interactions. The need for a more thorough understanding of the effect of spaceflight environment on polymicrobial interactions and potential impact on crew health and vehicle integrity is heightened since 1) several potential pathogens have been isolated from the ISS potable water system, 2) spaceflight has been shown to induce unexpected alterations in microbial responses, and 3) emergent phenotypes are often observed when multiple bacterial species are co- cultured together, as compared to pure cultures of single species. In order to address these concerns, suitable growth media are required that will not only support the isolation of these microbes but also the ability to distinguish between them when grown as mixed cultures. In this study, selective and/or differential media were developed for bacterial isolates collected from the ISS potable water supply. In addition to facilitating discrimination between bacteria, the ideal media for each strain was intended to have a 100% recovery rate compared to traditional R2A media. Antibiotic and reagent susceptibility and resistance tests were conducted for the purpose of developing each individual medium. To study a wide range of targets, 12 antibiotics were selected from seven major classes, including penicillin, cephalosporins, fluoroquinolones, aminoglycosides, glycopeptides/lipoglycopeptides, macrolides/lincosamides/streptogramins, tetracyclines, in addition to seven unclassified antibiotics and three reagents. Once developed, medium efficacy was determined by means of growth curve experiments. The development of these media is a critical step for further research into the mechanisms utilized by these strains to survive the harsh conditions of the ISS water system. Furthermore, with an understanding of the complex nature of these polymicrobial communities, specific contamination targeting and control can be conducted to reduce the risk to crew members. Understanding these microbial species and their susceptibilities has potential application for future NASA human explorations, including those to Mars.
ContributorsKing, Olivia Grace (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, Mark (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133270-Thumbnail Image.png
Description
Blood donations today undergo extensive screening for transfusion transmitted infections (TTI) since the discovery of the first infectious agent in the early 1900s. Nucleic Acid Testing (NAT) is a serological test used widely in disease detection. NAT is known to rapidly and effectively detect pathogenic genomic material in blood by

Blood donations today undergo extensive screening for transfusion transmitted infections (TTI) since the discovery of the first infectious agent in the early 1900s. Nucleic Acid Testing (NAT) is a serological test used widely in disease detection. NAT is known to rapidly and effectively detect pathogenic genomic material in blood by reducing the "window period" of infection. However, NAT produces false negative results for disease positive samples posing a risk of disease transmission. Therefore, NAT is used in conjunction with the Enzyme-Linked Immunosorbent Assay (ELISA) to mitigate these risks. However, the ELISA assay also poses the same risk as NAT. This study proposes immunosignaturing as an alternative serological test that may combat this risk and investigates whether it would be more effective than other standardized serological tests in disease detection. Immunosignaturing detects antibodies by utilizing a microarray of randomized peptide sequences. Immunosignaturing provides information about an individual's immune health from the pattern of reactivity of antibody-peptide binding. Unlike ELISA and NAT, immunosignaturing can be programmed to detect any disease and detect multiple diseases simultaneously. Using ELISA, NAT, and immunosignaturing, immune profiles of asymptomatic patients were constructed for 10 different classes of blood borne diseases. A pattern of infection was identified for each disease and the sensitivity and specificity of these assays were assessed relative to each other. Results indicate that immunosignaturing can be a viable diagnostic tool in blood testing. Immunosignatures demonstrated increased sensitivity and specificity compared to ELISA and NAT in discerning disease positive and negative samples within and across different classes of disease.
ContributorsSharma, Megumi (Author) / McFadden, Grant (Thesis director) / Nickerson, Cheryl (Committee member) / Green, Alex (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134706-Thumbnail Image.png
Description
Open source image analytics and data mining software are widely available but can be overly-complicated and non-intuitive for medical physicians and researchers to use. The ASU-Mayo Clinic Imaging Informatics Lab has developed an in-house pipeline to process medical images, extract imaging features, and develop multi-parametric models to assist disease staging

Open source image analytics and data mining software are widely available but can be overly-complicated and non-intuitive for medical physicians and researchers to use. The ASU-Mayo Clinic Imaging Informatics Lab has developed an in-house pipeline to process medical images, extract imaging features, and develop multi-parametric models to assist disease staging and diagnosis. The tools have been extensively used in a number of medical studies including brain tumor, breast cancer, liver cancer, Alzheimer's disease, and migraine. Recognizing the need from users in the medical field for a simplified interface and streamlined functionalities, this project aims to democratize this pipeline so that it is more readily available to health practitioners and third party developers.
ContributorsBaer, Lisa Zhou (Author) / Wu, Teresa (Thesis director) / Wang, Yalin (Committee member) / Computer Science and Engineering Program (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
152126-Thumbnail Image.png
Description
Video object segmentation (VOS) is an important task in computer vision with a lot of applications, e.g., video editing, object tracking, and object based encoding. Different from image object segmentation, video object segmentation must consider both spatial and temporal coherence for the object. Despite extensive previous work, the problem is

Video object segmentation (VOS) is an important task in computer vision with a lot of applications, e.g., video editing, object tracking, and object based encoding. Different from image object segmentation, video object segmentation must consider both spatial and temporal coherence for the object. Despite extensive previous work, the problem is still challenging. Usually, foreground object in the video draws more attention from humans, i.e. it is salient. In this thesis we tackle the problem from the aspect of saliency, where saliency means a certain subset of visual information selected by a visual system (human or machine). We present a novel unsupervised method for video object segmentation that considers both low level vision cues and high level motion cues. In our model, video object segmentation can be formulated as a unified energy minimization problem and solved in polynomial time by employing the min-cut algorithm. Specifically, our energy function comprises the unary term and pair-wise interaction energy term respectively, where unary term measures region saliency and interaction term smooths the mutual effects between object saliency and motion saliency. Object saliency is computed in spatial domain from each discrete frame using multi-scale context features, e.g., color histogram, gradient, and graph based manifold ranking. Meanwhile, motion saliency is calculated in temporal domain by extracting phase information of the video. In the experimental section of this thesis, our proposed method has been evaluated on several benchmark datasets. In MSRA 1000 dataset the result demonstrates that our spatial object saliency detection is superior to the state-of-art methods. Moreover, our temporal motion saliency detector can achieve better performance than existing motion detection approaches in UCF sports action analysis dataset and Weizmann dataset respectively. Finally, we show the attractive empirical result and quantitative evaluation of our approach on two benchmark video object segmentation datasets.
ContributorsWang, Yilin (Author) / Li, Baoxin (Thesis advisor) / Wang, Yalin (Committee member) / Cleveau, David (Committee member) / Arizona State University (Publisher)
Created2013
152128-Thumbnail Image.png
Description
Learning from high dimensional biomedical data attracts lots of attention recently. High dimensional biomedical data often suffer from the curse of dimensionality and have imbalanced class distributions. Both of these features of biomedical data, high dimensionality and imbalanced class distributions, are challenging for traditional machine learning methods and may affect

Learning from high dimensional biomedical data attracts lots of attention recently. High dimensional biomedical data often suffer from the curse of dimensionality and have imbalanced class distributions. Both of these features of biomedical data, high dimensionality and imbalanced class distributions, are challenging for traditional machine learning methods and may affect the model performance. In this thesis, I focus on developing learning methods for the high-dimensional imbalanced biomedical data. In the first part, a sparse canonical correlation analysis (CCA) method is presented. The penalty terms is used to control the sparsity of the projection matrices of CCA. The sparse CCA method is then applied to find patterns among biomedical data sets and labels, or to find patterns among different data sources. In the second part, I discuss several learning problems for imbalanced biomedical data. Note that traditional learning systems are often biased when the biomedical data are imbalanced. Therefore, traditional evaluations such as accuracy may be inappropriate for such cases. I then discuss several alternative evaluation criteria to evaluate the learning performance. For imbalanced binary classification problems, I use the undersampling based classifiers ensemble (UEM) strategy to obtain accurate models for both classes of samples. A small sphere and large margin (SSLM) approach is also presented to detect rare abnormal samples from a large number of subjects. In addition, I apply multiple feature selection and clustering methods to deal with high-dimensional data and data with highly correlated features. Experiments on high-dimensional imbalanced biomedical data are presented which illustrate the effectiveness and efficiency of my methods.
ContributorsYang, Tao (Author) / Ye, Jieping (Thesis advisor) / Wang, Yalin (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2013
171764-Thumbnail Image.png
Description
This dissertation constructs a new computational processing framework to robustly and precisely quantify retinotopic maps based on their angle distortion properties. More generally, this framework solves the problem of how to robustly and precisely quantify (angle) distortions of noisy or incomplete (boundary enclosed) 2-dimensional surface to surface mappings. This framework

This dissertation constructs a new computational processing framework to robustly and precisely quantify retinotopic maps based on their angle distortion properties. More generally, this framework solves the problem of how to robustly and precisely quantify (angle) distortions of noisy or incomplete (boundary enclosed) 2-dimensional surface to surface mappings. This framework builds upon the Beltrami Coefficient (BC) description of quasiconformal mappings that directly quantifies local mapping (circles to ellipses) distortions between diffeomorphisms of boundary enclosed plane domains homeomorphic to the unit disk. A new map called the Beltrami Coefficient Map (BCM) was constructed to describe distortions in retinotopic maps. The BCM can be used to fully reconstruct the original target surface (retinal visual field) of retinotopic maps. This dissertation also compared retinotopic maps in the visual processing cascade, which is a series of connected retinotopic maps responsible for visual data processing of physical images captured by the eyes. By comparing the BCM results from a large Human Connectome project (HCP) retinotopic dataset (N=181), a new computational quasiconformal mapping description of the transformed retinal image as it passes through the cascade is proposed, which is not present in any current literature. The description applied on HCP data provided direct visible and quantifiable geometric properties of the cascade in a way that has not been observed before. Because retinotopic maps are generated from in vivo noisy functional magnetic resonance imaging (fMRI), quantifying them comes with a certain degree of uncertainty. To quantify the uncertainties in the quantification results, it is necessary to generate statistical models of retinotopic maps from their BCMs and raw fMRI signals. Considering that estimating retinotopic maps from real noisy fMRI time series data using the population receptive field (pRF) model is a time consuming process, a convolutional neural network (CNN) was constructed and trained to predict pRF model parameters from real noisy fMRI data
ContributorsTa, Duyan Nguyen (Author) / Wang, Yalin (Thesis advisor) / Lu, Zhong-Lin (Committee member) / Hansford, Dianne (Committee member) / Liu, Huan (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2022
168694-Thumbnail Image.png
Description
Retinotopic map, the map between visual inputs on the retina and neuronal activation in brain visual areas, is one of the central topics in visual neuroscience. For human observers, the map is typically obtained by analyzing functional magnetic resonance imaging (fMRI) signals of cortical responses to slowly moving visual stimuli

Retinotopic map, the map between visual inputs on the retina and neuronal activation in brain visual areas, is one of the central topics in visual neuroscience. For human observers, the map is typically obtained by analyzing functional magnetic resonance imaging (fMRI) signals of cortical responses to slowly moving visual stimuli on the retina. Biological evidences show the retinotopic mapping is topology-preserving/topological (i.e. keep the neighboring relationship after human brain process) within each visual region. Unfortunately, due to limited spatial resolution and the signal-noise ratio of fMRI, state of art retinotopic map is not topological. The topic was to model the topology-preserving condition mathematically, fix non-topological retinotopic map with numerical methods, and improve the quality of retinotopic maps. The impose of topological condition, benefits several applications. With the topological retinotopic maps, one may have a better insight on human retinotopic maps, including better cortical magnification factor quantification, more precise description of retinotopic maps, and potentially better exam ways of in Ophthalmology clinic.
ContributorsTu, Yanshuai (Author) / Wang, Yalin (Thesis advisor) / Lu, Zhong-Lin (Committee member) / Crook, Sharon (Committee member) / Yang, Yezhou (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2022
171573-Thumbnail Image.png
Description
Mycobacterial infections, as represented by leprosy and tuberculosis, have persisted as human pathogens for millennia. Their environmental counterparts, nontuberculous mycobacteria (NTM), are commodious infectious agents endowed with extensive innate and acquired antimicrobial resistance. The current drug development process selects for antibiotics with high specificity for definitive targets within bacterial metabolic

Mycobacterial infections, as represented by leprosy and tuberculosis, have persisted as human pathogens for millennia. Their environmental counterparts, nontuberculous mycobacteria (NTM), are commodious infectious agents endowed with extensive innate and acquired antimicrobial resistance. The current drug development process selects for antibiotics with high specificity for definitive targets within bacterial metabolic and replication pathways. Because these compounds demonstrate limited efficacy against mycobacteria, novel antimycobacterial agents with unconventional mechanisms of action were identified. Two highly resistant NTMs, Mycobacterium abscessus (Mabs) a rapid-growing respiratory, skin, and soft tissue pathogen, and Mycobacterium ulcerans (MU), the causative agent of Buruli ulcer, were selected as targets. Compounds that indicated antimicrobial activity against other highly resistant pathogens were selected for initial screening. Antimicrobial peptides (AMPs) have demonstrated activity against a variety of bacterial pathogens, including mycobacterial species. Designed antimicrobial peptides (dAMPs), rationally-designed and synthetic contingents, combine iterative features of natural AMPs to achieve superior antimicrobial activity in resistant pathogens. Initial screening identified two dAMPs, RP554 and RP557, with bactericidal activity against Mabs. Clay-associated ions have previously demonstrated bactericidal activity against MU. Synthetic and customizable aluminosilicates have also demonstrated adsorption of bacterial cells and toxins. On this basis, two aluminosilicate materials, geopolymers (GP) and ion-exchange nanozeolites (IE-nZeos), were screened for antimicrobial activity against MU and its fast-growing relative, Mycobacterium marinum (Mmar). GPs demonstrated adsorption of MU cells and mycolactone, a secreted, lipophilic toxin, whereas Cu-nZeos and Ag-nZeos demonstrated antibacterial activity against MU and Mmar. Cumulatively, these results indicate that an integrative drug selection process may yield a new generation of antimycobacterial agents.
ContributorsDermody, Roslyn June (Author) / Haydel, Shelley E (Thesis advisor) / Bean, Heather (Committee member) / Nickerson, Cheryl (Committee member) / Stephanopoulos, Nicholas (Committee member) / Arizona State University (Publisher)
Created2022
171979-Thumbnail Image.png
Description
Neural tissue is a delicate system comprised of neurons and their synapses, glial cells for support, and vasculature for oxygen and nutrient delivery. This complexity ultimately gives rise to the human brain, a system researchers have become increasingly interested in replicating for artificial intelligence purposes. Some have even gone so

Neural tissue is a delicate system comprised of neurons and their synapses, glial cells for support, and vasculature for oxygen and nutrient delivery. This complexity ultimately gives rise to the human brain, a system researchers have become increasingly interested in replicating for artificial intelligence purposes. Some have even gone so far as to use neuronal cultures as computing hardware, but utilizing an environment closer to a living brain means having to grapple with the same issues faced by clinicians and researchers trying to treat brain disorders. Most outstanding among these are the problems that arise with invasive interfaces. Optical techniques that use fluorescent dyes and proteins have emerged as a solution for noninvasive imaging with single-cell resolution in vitro and in vivo, but feeding in information in the form of neuromodulation still requires implanted electrodes. The implantation process of these electrodes damages nearby neurons and their connections, causes hemorrhaging, and leads to scarring and gliosis that diminish efficacy. Here, a new approach for noninvasive neuromodulation with high spatial precision is described. It makes use of a combination of ultrasound, high frequency acoustic energy that can be focused to submillimeter regions at significant depths, and electric fields, an effective tool for neuromodulation that lacks spatial precision when used in a noninvasive manner. The hypothesis is that, when combined in a specific manner, these will lead to nonlinear effects at neuronal membranes that cause cells only in the region of overlap to be stimulated. Computational modeling confirmed this combination to be uniquely stimulating, contingent on certain physical effects of ultrasound on cell membranes. Subsequent in vitro experiments led to inconclusive results, however, leaving the door open for future experimentation with modified configurations and approaches. The specific combination explored here is also not the only untested technique that may achieve a similar goal.
ContributorsNester, Elliot (Author) / Wang, Yalin (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2022