Matching Items (25)
152123-Thumbnail Image.png
Description
This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems

This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems biology level, I provide new targets to explore for the research community. Furthermore I present a new online web resource that unifies various bioinformatics databases to enable discovery of relevant features in 3D protein structures.
ContributorsMielke, Clinton (Author) / Mandarino, Lawrence (Committee member) / LaBaer, Joshua (Committee member) / Magee, D. Mitchell (Committee member) / Dinu, Valentin (Committee member) / Willis, Wayne (Committee member) / Arizona State University (Publisher)
Created2013
150818-Thumbnail Image.png
Description
While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria

While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria account for the majority of oxygen consumption during aerobic exercise, the primary goal was to investigate differences in isolated muscle mitochondria between these species and to examine to what extent factors intrinsic to mitochondria may account for the behavior observed in the intact tissue and whole organism. First, maximal enzyme activities were assessed in sparrow and rat mitochondria. Citrate synthase and aspartate aminotransferase activity were higher in sparrow compared to rat mitochondria, while glutamate dehydrogenase activity was lower. Sparrow mitochondrial NAD-linked isocitrate dehydrogenase activity was dependent on phosphate, unlike the mammalian enzyme. Next, the rate of oxygen consumption (JO), electron transport chain (ETC) activity, and reactive oxygen species (ROS) production were assessed in intact mitochondria. Maximal rates of fat oxidation were lower than for carbohydrate in rat but not sparrow mitochondria. ETC activity was higher in sparrows, but no differences were found in ROS production between species. Finally, fuel selection and control of respiration at three rates between rest and maximum were assessed. Mitochondrial fuel oxidation and selection mirrored that of the whole body; in rat mitochondria the reliance on carbohydrate increased as the rate of oxygen consumption increased, whereas fat dominated under all conditions in the sparrow. These data indicate fuel selection, at least in part, can be modulated at the level of the mitochondrial matrix when multiple substrates are present at saturating levels. As an increase in matrix oxidation-reduction potential has been linked to a suppression of fat oxidation and high ROS production, the high ETC activity relative to dehydrogenase activity in avian compared to mammalian mitochondria may result in lower matrix oxidation-reduction potential, allowing fatty acid oxidation to proceed while also resulting in low ROS production in vivo.
ContributorsKuzmiak, Sarah (Author) / Willis, Wayne T (Thesis advisor) / Mandarino, Lawrence (Committee member) / Sweazea, Karen (Committee member) / Harrison, Jon (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2012
132268-Thumbnail Image.png
Description
This research project investigated known and novel differential genetic variants and their associated molecular pathways involved in Type II diabetes mellitus for the purpose of improving diagnosis and treatment methods. The goal of this investigation was to 1) identify the genetic variants and SNPs in Type II diabetes to develo

This research project investigated known and novel differential genetic variants and their associated molecular pathways involved in Type II diabetes mellitus for the purpose of improving diagnosis and treatment methods. The goal of this investigation was to 1) identify the genetic variants and SNPs in Type II diabetes to develop a gene regulatory pathway, and 2) utilize this pathway to determine suitable drug therapeutics for prevention and treatment. Using a Gene Set Enrichment Analysis (GSEA), a set of 1000 gene identifiers from a Mayo Clinic database was analyzed to determine the most significant genetic variants related to insulin signaling pathways involved in Type II Diabetes. The following genes were identified: NRAS, KRAS, PIK3CA, PDE3B, TSC1, AKT3, SOS1, NEU1, PRKAA2, AMPK, and ACC. In an extensive literature review and cross-analysis with Kegg and Reactome pathway databases, novel SNPs located on these gene variants were identified and used to determine suitable drug therapeutics for treatment. Overall, understanding how genetic mutations affect target gene function related to Type II Diabetes disease pathology is crucial to the development of effective diagnosis and treatment. This project provides new insight into the molecular basis of the Type II Diabetes, serving to help untangle the regulatory complexity of the disease and aid in the advancement of diagnosis and treatment. Keywords: Type II Diabetes mellitus, Gene Set Enrichment Analysis, genetic variants, KEGG Insulin Pathway, gene-regulatory pathway
ContributorsBucklin, Lindsay (Co-author) / Davis, Vanessa (Co-author) / Holechek, Susan (Thesis director) / Wang, Junwen (Committee member) / Nyarige, Verah (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132756-Thumbnail Image.png
Description
This research project investigated known and novel differential genetic variants and their associated molecular pathways involved in Type II diabetes mellitus for the purpose of improving diagnosis and treatment methods. The goal of this investigation was to 1) identify the genetic variants and SNPs in Type II diabetes to develo

This research project investigated known and novel differential genetic variants and their associated molecular pathways involved in Type II diabetes mellitus for the purpose of improving diagnosis and treatment methods. The goal of this investigation was to 1) identify the genetic variants and SNPs in Type II diabetes to develop a gene regulatory pathway, and 2) utilize this pathway to determine suitable drug therapeutics for prevention and treatment. Using a Gene Set Enrichment Analysis (GSEA), a set of 1000 gene identifiers from a Mayo Clinic database was analyzed to determine the most significant genetic variants related to insulin signaling pathways involved in Type II Diabetes. The following genes were identified: NRAS, KRAS, PIK3CA, PDE3B, TSC1, AKT3, SOS1, NEU1, PRKAA2, AMPK, and ACC. In an extensive literature review and cross-analysis with Kegg and Reactome pathway databases, novel SNPs located on these gene variants were identified and used to determine suitable drug therapeutics for treatment. Overall, understanding how genetic mutations affect target gene function related to Type II Diabetes disease pathology is crucial to the development of effective diagnosis and treatment. This project provides new insight into the molecular basis of the Type II Diabetes, serving to help untangle the regulatory complexity of the disease and aid in the advancement of diagnosis and treatment.
ContributorsDavis, Vanessa Brooke (Co-author) / Bucklin, Lindsay (Co-author) / Holechek, Susan (Thesis director) / Wang, Junwen (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
171582-Thumbnail Image.png
Description
High throughput transcriptome data analysis like Single-cell Ribonucleic Acid sequencing (scRNA-seq) and Circular Ribonucleic Acid (circRNA) data have made significant breakthroughs, especially in cancer genomics. Analysis of transcriptome time series data is core in identifying time point(s) where drastic changes in gene transcription are associated with homeostatic to non-homeostatic cellular

High throughput transcriptome data analysis like Single-cell Ribonucleic Acid sequencing (scRNA-seq) and Circular Ribonucleic Acid (circRNA) data have made significant breakthroughs, especially in cancer genomics. Analysis of transcriptome time series data is core in identifying time point(s) where drastic changes in gene transcription are associated with homeostatic to non-homeostatic cellular transition (tipping points). In Chapter 2 of this dissertation, I present a novel cell-type specific and co-expression-based tipping point detection method to identify target gene (TG) versus transcription factor (TF) pairs whose differential co-expression across time points drive biological changes in different cell types and the time point when these changes are observed. This method was applied to scRNA-seq data sets from a SARS-CoV-2 study (18 time points), a human cerebellum development study (9 time points), and a lung injury study (18 time points). Similarly, leveraging transcriptome data across treatment time points, I developed methodologies to identify treatment-induced and cell-type specific differentially co-expressed pairs (DCEPs). In part one of Chapter 3, I presented a pipeline that used a series of statistical tests to detect DCEPs. This method was applied to scRNA-seq data of patients with non-small cell lung cancer (NSCLC) sequenced across cancer treatment times. However, this pipeline does not account for correlations among multiple single cells from the same sample and correlations among multiple samples from the same patient. In Part 2 of Chapter 3, I presented a solution to this problem using a mixed-effect model. In Chapter 4, I present a summary of my work that focused on the cross-species analysis of circRNA transcriptome time series data. I compared circRNA profiles in neonatal pig and mouse hearts, identified orthologous circRNAs, and discussed regulation mechanisms of cardiomyocyte proliferation and myocardial regeneration conserved between mouse and pig at different time points.
ContributorsNyarige, Verah Mocheche (Author) / Liu, Li (Thesis advisor) / Wang, Junwen (Thesis advisor) / Dinu, Valentin (Committee member) / Arizona State University (Publisher)
Created2022
171902-Thumbnail Image.png
Description
Beta-Amyloid(Aβ) plaques and tau protein tangles in the brain are now widely recognized as the defining hallmarks of Alzheimer’s disease (AD), followed by structural atrophy detectable on brain magnetic resonance imaging (MRI) scans. However, current methods to detect Aβ/tau pathology are either invasive (lumbar puncture) or quite costly and not

Beta-Amyloid(Aβ) plaques and tau protein tangles in the brain are now widely recognized as the defining hallmarks of Alzheimer’s disease (AD), followed by structural atrophy detectable on brain magnetic resonance imaging (MRI) scans. However, current methods to detect Aβ/tau pathology are either invasive (lumbar puncture) or quite costly and not widely available (positron emission tomography (PET)). And one of the particular neurodegenerative regions is the hippocampus to which the influence of Aβ/tau on has been one of the research projects focuses in the AD pathophysiological progress. In this dissertation, I proposed three novel machine learning and statistical models to examine subtle aspects of the hippocampal morphometry from MRI that are associated with Aβ /tau burden in the brain, measured using PET images. The first model is a novel unsupervised feature reduction model to generate a low-dimensional representation of hippocampal morphometry for each individual subject, which has superior performance in predicting Aβ/tau burden in the brain. The second one is an efficient federated group lasso model to identify the hippocampal subregions where atrophy is strongly associated with abnormal Aβ/Tau. The last one is a federated model for imaging genetics, which can identify genetic and transcriptomic influences on hippocampal morphometry. Finally, I stated the results of these three models that have been published or submitted to peer-reviewed conferences and journals.
ContributorsWu, Jianfeng (Author) / Wang, Yalin (Thesis advisor) / Li, Baoxin (Committee member) / Liang, Jianming (Committee member) / Wang, Junwen (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2022
153518-Thumbnail Image.png
Description
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by progressive autoimmune destruction of insulin-producing pancreatic β-cells. Genetic, immunological and environmental factors contribute to T1D development. The focus of this dissertation is to track the humoral immune response in T1D by profiling autoantibodies (AAbs) and anti-viral antibodies using an

Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by progressive autoimmune destruction of insulin-producing pancreatic β-cells. Genetic, immunological and environmental factors contribute to T1D development. The focus of this dissertation is to track the humoral immune response in T1D by profiling autoantibodies (AAbs) and anti-viral antibodies using an innovative protein array platform called Nucleic Acid Programmable Protein Array (NAPPA).

AAbs provide value in identifying individuals at risk, stratifying patients with different clinical courses, improving our understanding of autoimmune destructions, identifying antigens for cellular immune response and providing candidates for prevention trials in T1D. A two-stage serological AAb screening against 6,000 human proteins was performed. A dual specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2) was validated with 36% sensitivity at 98% specificity by an orthogonal immunoassay. This is the first systematic screening for novel AAbs against large number of human proteins by protein arrays in T1D. A more comprehensive search for novel AAbs was performed using a knowledge-based approach by ELISA and a screening-based approach against 10,000 human proteins by NAPPA. Six AAbs were identified and validated with sensitivities ranged from 16% to 27% at 95% specificity. These two studies enriched the T1D “autoantigenome” and provided insights into T1D pathophysiology in an unprecedented breadth and width.

The rapid rise of T1D incidence suggests the potential involvement of environmental factors including viral infections. Sero-reactivity to 646 viral antigens was assessed in new-onset T1D patients. Antibody positive rate of EBV was significantly higher in cases than controls that suggested a potential role of EBV in T1D development. A high density-NAPPA platform was demonstrated with high reproducibility and sensitivity in profiling anti-viral antibodies.

This dissertation shows the power of a protein-array based immunoproteomics approach to characterize humoral immunoprofile against human and viral proteomes. The identification of novel T1D-specific AAbs and T1D-associated viruses will help to connect the nodes in T1D etiology and provide better understanding of T1D pathophysiology.
ContributorsBian, Xiaofang (Author) / LaBaer, Joshua (Thesis advisor) / Mandarino, Lawrence (Committee member) / Chang, Yung (Committee member) / Arizona State University (Publisher)
Created2015
161916-Thumbnail Image.png
Description
This dissertation presents three novel algorithms with real-world applications to genomic oncology. While the methodologies presented here were all developed to overcome various challenges associated with the adoption of high throughput genomic data in clinical oncology, they can be used in other domains as well. First, a network informed feature

This dissertation presents three novel algorithms with real-world applications to genomic oncology. While the methodologies presented here were all developed to overcome various challenges associated with the adoption of high throughput genomic data in clinical oncology, they can be used in other domains as well. First, a network informed feature ranking algorithm is presented, which shows a significant increase in ability to select true predictive features from simulated data sets when compared to other state of the art graphical feature ranking methods. The methodology also shows an increased ability to predict pathological complete response to preoperative chemotherapy from genomic sequencing data of breast cancer patients utilizing domain knowledge from protein-protein interaction networks. Second, an algorithm that overcomes population biases inherent in the use of a human reference genome developed primarily from European populations is presented to classify microsatellite instability (MSI) status from next-generation-sequencing (NGS) data. The methodology significantly increases the accuracy of MSI status prediction in African and African American ancestries. Finally, a single variable model is presented to capture the bimodality inherent in genomic data stemming from heterogeneous diseases. This model shows improvements over other parametric models in the measurements of receiver-operator characteristic (ROC) curves for bimodal data. The model is used to estimate ROC curves for heterogeneous biomarkers in a dataset containing breast cancer and cancer-free specimen.
ContributorsSaul, Michelle (Author) / Dinu, Valentin (Thesis advisor) / Liu, Li (Committee member) / Wang, Junwen (Committee member) / Arizona State University (Publisher)
Created2021
128782-Thumbnail Image.png
Description

We sought to evaluate the reproducibility of a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approach to measure the stable-isotope enrichment of in vivo-labeled muscle ATP synthase β subunit (β-F1-ATPase), a protein most directly involved in ATP production, and whose abundance is reduced under a variety of circumstances. Muscle was obtained from

We sought to evaluate the reproducibility of a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approach to measure the stable-isotope enrichment of in vivo-labeled muscle ATP synthase β subunit (β-F1-ATPase), a protein most directly involved in ATP production, and whose abundance is reduced under a variety of circumstances. Muscle was obtained from a rat infused with stable-isotope-labeled leucine. The muscle was homogenized, β-F1-ATPase immunoprecipitated, and the protein was resolved using 1D-SDS PAGE. Following trypsin digestion of the isolated protein, the resultant peptide mixtures were subjected to analysis by HPLC-ESI-MS/MS, which resulted in the detection of multiple β-F1-ATPase peptides. There were three β-F1-ATPase unique peptides with a leucine residue in the amino acid sequence, and which were detected with high intensity relative to other peptides and assigned with >95% probability to β-F1-ATPase. These peptides were specifically targeted for fragmentation to access their stable-isotope enrichment based on MS/MS peak areas calculated from extracted ion chromatographs for selected labeled and unlabeled fragment ions. Results showed best linearity (R[superscript 2] = 0.99) in the detection of MS/MS peak areas for both labeled and unlabeled fragment ions, over a wide range of amounts of injected protein, specifically for the β-F1-ATPase[subscript 134-143] peptide. Measured stable-isotope enrichment was highly reproducible for the β-F1-ATPase[subscript 134-143] peptide (CV = 2.9%). Further, using mixtures of synthetic labeled and unlabeled peptides we determined that there is an excellent linear relationship (R[superscript 2] = 0.99) between measured and predicted enrichment for percent enrichments ranging between 0.009% and 8.185% for the β-F1-ATPase[subscript 134-143] peptide. The described approach provides a reliable approach to measure the stable-isotope enrichment of in-vivo-labeled muscle β-F1-ATPase based on the determination of the enrichment of the β-F1-ATPase[subscript 134-143] peptide.

ContributorsEverman, Sarah (Author) / Yi, Zhengping (Author) / Langlais, Paul (Author) / Mandarino, Lawrence (Author) / Luo, Moulun (Author) / Roberts, Christine (Author) / Katsanos, Christos (Author) / College of Health Solutions (Contributor)
Created2011-10-12
128873-Thumbnail Image.png
Description

Background: Healthy individuals on the lower end of the insulin sensitivity spectrum also have a reduced gene expression response to exercise for specific genes. The goal of this study was to determine the relationship between insulin sensitivity and exercise-induced gene expression in an unbiased, global manner.

Methods and Findings: Euglycemic clamps were used

Background: Healthy individuals on the lower end of the insulin sensitivity spectrum also have a reduced gene expression response to exercise for specific genes. The goal of this study was to determine the relationship between insulin sensitivity and exercise-induced gene expression in an unbiased, global manner.

Methods and Findings: Euglycemic clamps were used to measure insulin sensitivity and muscle biopsies were done at rest and 30 minutes after a single acute exercise bout in 14 healthy participants. Changes in mRNA expression were assessed using microarrays, and miRNA analysis was performed in a subset of 6 of the participants using sequencing techniques. Following exercise, 215 mRNAs were changed at the probe level (Bonferroni-corrected P<0.00000115). Pathway and Gene Ontology analysis showed enrichment in MAP kinase signaling, transcriptional regulation and DNA binding. Changes in several transcription factor mRNAs were correlated with insulin sensitivity, including MYC, r=0.71; SNF1LK, r=0.69; and ATF3, r= 0.61 (5 corrected for false discovery rate). Enrichment in the 5’-UTRs of exercise-responsive genes suggested regulation by common transcription factors, especially EGR1. miRNA species of interest that changed after exercise included miR-378, which is located in an intron of the PPARGC1B gene.

Conclusions: These results indicate that transcription factor gene expression responses to exercise depend highly on insulin sensitivity in healthy people. The overall pattern suggests a coordinated cycle by which exercise and insulin sensitivity regulate gene expression in muscle.

ContributorsMcLean, Carrie (Author) / Mielke, Clinton (Author) / Cordova, Jeanine (Author) / Langlais, Paul R. (Author) / Bowen, Benjamin (Author) / Miranda, Danielle (Author) / Coletta, Dawn (Author) / Mandarino, Lawrence (Author) / College of Health Solutions (Contributor)
Created2015-05-18