Matching Items (86)
154021-Thumbnail Image.png
Description
The development of high efficiency III-V solar cells is needed to meet the demands of a promising renewable energy source. Intermediate band solar cells (IBSCs) using semiconductor quantum dots (QDs) have been proposed to exceed the Shockley-Queisser efficiency limit [1]. The introduction of an IB in the forbidden gap of

The development of high efficiency III-V solar cells is needed to meet the demands of a promising renewable energy source. Intermediate band solar cells (IBSCs) using semiconductor quantum dots (QDs) have been proposed to exceed the Shockley-Queisser efficiency limit [1]. The introduction of an IB in the forbidden gap of host material generates two additional carrier transitions for sub-bandgap photon absorption, leading to increased photocurrent of IBSCs while simultaneously allowing an open-circuit voltage of the highest band gap. To realize a high efficiency IBSC, QD structures should have high crystal quality and optimized electronic properties. This dissertation focuses on the investigation and optimization of the structural and optical properties of InAs/GaAsSb QDs and the development of InAs/GaAsSb QD-based IBSCs.

In the present dissertation, the interband optical transition and carrier lifetime of InAs/GaAsSb QDs with different silicon delta-doping densities have been first studied by time-integrated and time-resolved photoluminescence (PL). It is found that an optimized silicon delta-doping density in the QDs enables to fill the QD electronic states with electrons for sub-bandgap photon absorption and to improve carrier lifetime of the QDs.

After that, the crystal quality and QD morphology of single- and multi-stack InAs/GaAsSb QDs with different Sb compositions have been investigated by transmission electron microscopy (TEM) and x-ray diffraction (XRD). The TEM studies reveal that QD morphology of single-stack QDs is affected by Sb composition due to strain reducing effect of Sb incorporation. The XRD studies confirm that the increase of Sb composition increases the lattice mismatch between GaAs matrix and GaAsSb spacers, resulting in increase of the strain relaxation in GaAsSb of the multi-stack QDs. Furthermore, the increase of Sb composition causes a PL redshift and increases carrier lifetime of QDs.

Finally, the spacer layer thickness of multi-stack InAs/GaAsSb QDs is optimized for the growth of InAs/GaAsSb QD solar cells (QDSCs). The InAs/GaAsSb QDSCs with GaP strain compensating layer are grown and their device performances are characterized. The increase of GaP coverage is beneficial to improve the conversion efficiency of the QDSCs. However, the conversion efficiency is reduced when using a relatively large GaP coverage.
ContributorsKim, Yeongho (Author) / Honsberg, Christiana (Thesis advisor) / Goodnick, Stephen (Committee member) / Faleev, Nikolai (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2015
153290-Thumbnail Image.png
Description
Pre-Exposure Prophylaxis (PrEP) is any medical or public health procedure used before exposure to the disease causing agent, its purpose is to prevent, rather than treat or cure a disease. Most commonly, PrEP refers to an experimental HIV-prevention strategy that would use antiretrovirals to protect HIV-negative people from HIV infection.

Pre-Exposure Prophylaxis (PrEP) is any medical or public health procedure used before exposure to the disease causing agent, its purpose is to prevent, rather than treat or cure a disease. Most commonly, PrEP refers to an experimental HIV-prevention strategy that would use antiretrovirals to protect HIV-negative people from HIV infection. A deterministic mathematical model of HIV transmission is developed to evaluate the public-health impact of oral PrEP interventions, and to compare PrEP effectiveness with respect to different evaluation methods. The effects of demographic, behavioral, and epidemic parameters on the PrEP impact are studied in a multivariate sensitivity analysis. Most of the published models on HIV intervention impact assume that the number of individuals joining the sexually active population per year is constant or proportional to the total population. In the second part of this study, three models are presented and analyzed to study the PrEP intervention, with constant, linear, and logistic recruitment rates. How different demographic assumptions can affect the evaluation of PrEP is studied. When provided with data, often least square fitting or similar approaches can be used to determine a single set of approximated parameter values that make the model fit the data best. However, least square fitting only provides point estimates and does not provide information on how strongly the data supports these particular estimates. Therefore, in the third part of this study, Bayesian parameter estimation is applied on fitting ODE model to the related HIV data. Starting with a set of prior distributions for the parameters as initial guess, Bayes' formula can be applied to obtain a set of posterior distributions for the parameters which makes the model fit the observed data best. Evaluating the posterior distribution often requires the integration of high-dimensional functions, which is usually difficult to calculate numerically. Therefore, the Markov chain Monte Carlo (MCMC) method is used to approximate the posterior distribution.
ContributorsZhao, Yuqin (Author) / Kuang, Yang (Thesis advisor) / Taylor, Jesse (Committee member) / Armbruster, Dieter (Committee member) / Tang, Wenbo (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2014
152943-Thumbnail Image.png
Description
In a 2004 paper, John Nagy raised the possibility of the existence of a hypertumor \emph{i.e.}, a focus of aggressively reproducing parenchyma cells that invade part or all of a tumor. His model used a system of nonlinear ordinary differential equations to find a suitable set of conditions for which

In a 2004 paper, John Nagy raised the possibility of the existence of a hypertumor \emph{i.e.}, a focus of aggressively reproducing parenchyma cells that invade part or all of a tumor. His model used a system of nonlinear ordinary differential equations to find a suitable set of conditions for which these hypertumors exist. Here that model is expanded by transforming it into a system of nonlinear partial differential equations with diffusion, advection, and a free boundary condition to represent a radially symmetric tumor growth. Two strains of parenchymal cells are incorporated; one forming almost the entirety of the tumor while the much more aggressive strain

appears in a smaller region inside of the tumor. Simulations show that if the aggressive strain focuses its efforts on proliferating and does not contribute to angiogenesis signaling when in a hypoxic state, a hypertumor will form. More importantly, this resultant aggressive tumor is paradoxically prone to extinction and hypothesize is the cause of necrosis in many vascularized tumors.
ContributorsAlvarez, Roberto L (Author) / Milner, Fabio A (Thesis advisor) / Nagy, John D. (Committee member) / Kuang, Yang (Committee member) / Thieme, Horst (Committee member) / Mahalov, Alex (Committee member) / Smith, Hal (Committee member) / Arizona State University (Publisher)
Created2014
128685-Thumbnail Image.png
Description

Predicting the timing of a castrate resistant prostate cancer is critical to lowering medical costs and improving the quality of life of advanced prostate cancer patients. We formulate, compare and analyze two mathematical models that aim to forecast future levels of prostate-specific antigen (PSA). We accomplish these tasks by employing

Predicting the timing of a castrate resistant prostate cancer is critical to lowering medical costs and improving the quality of life of advanced prostate cancer patients. We formulate, compare and analyze two mathematical models that aim to forecast future levels of prostate-specific antigen (PSA). We accomplish these tasks by employing clinical data of locally advanced prostate cancer patients undergoing androgen deprivation therapy (ADT). While these models are simplifications of a previously published model, they fit data with similar accuracy and improve forecasting results. Both models describe the progression of androgen resistance. Although Model 1 is simpler than the more realistic Model 2, it can fit clinical data to a greater precision. However, we found that Model 2 can forecast future PSA levels more accurately. These findings suggest that including more realistic mechanisms of androgen dynamics in a two population model may help androgen resistance timing prediction.

ContributorsBaez, Javier (Author) / Kuang, Yang (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-11-16
141494-Thumbnail Image.png
Description

Background:
Data assimilation refers to methods for updating the state vector (initial condition) of a complex spatiotemporal model (such as a numerical weather model) by combining new observations with one or more prior forecasts. We consider the potential feasibility of this approach for making short-term (60-day) forecasts of the growth and

Background:
Data assimilation refers to methods for updating the state vector (initial condition) of a complex spatiotemporal model (such as a numerical weather model) by combining new observations with one or more prior forecasts. We consider the potential feasibility of this approach for making short-term (60-day) forecasts of the growth and spread of a malignant brain cancer (glioblastoma multiforme) in individual patient cases, where the observations are synthetic magnetic resonance images of a hypothetical tumor.

Results:
We apply a modern state estimation algorithm (the Local Ensemble Transform Kalman Filter), previously developed for numerical weather prediction, to two different mathematical models of glioblastoma, taking into account likely errors in model parameters and measurement uncertainties in magnetic resonance imaging. The filter can accurately shadow the growth of a representative synthetic tumor for 360 days (six 60-day forecast/update cycles) in the presence of a moderate degree of systematic model error and measurement noise.

Conclusions:
The mathematical methodology described here may prove useful for other modeling efforts in biology and oncology. An accurate forecast system for glioblastoma may prove useful in clinical settings for treatment planning and patient counseling.

ContributorsKostelich, Eric (Author) / Kuang, Yang (Author) / McDaniel, Joshua (Author) / Moore, Nina Z. (Author) / Martirosyan, Nikolay L. (Author) / Preul, Mark C. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-12-21
137847-Thumbnail Image.png
Description
Glioblastoma multiforme (GBMs) is the most prevalent brain tumor type and causes approximately 40% of all non-metastic primary tumors in adult patients [1]. GBMs are malignant, grade-4 brain tumors, the most aggressive classication as established by the World Health Organization and are marked by their low survival rate; the median

Glioblastoma multiforme (GBMs) is the most prevalent brain tumor type and causes approximately 40% of all non-metastic primary tumors in adult patients [1]. GBMs are malignant, grade-4 brain tumors, the most aggressive classication as established by the World Health Organization and are marked by their low survival rate; the median survival time is only twelve months from initial diagnosis: Patients who live more than three years are considered long-term survivors [2]. GBMs are highly invasive and their diffusive growth pattern makes it impossible to remove the tumors by surgery alone [3]. The purpose of this paper is to use individual patient data to parameterize a model of GBMs that allows for data on tumor growth and development to be captured on a clinically relevant time scale. Such an endeavor is the rst step to a clinically applicable predictions of GBMs. Previous research has yielded models that adequately represent the development of GBMs, but they have not attempted to follow specic patient cases through the entire tumor process. Using the model utilized by Kostelich et al. [4], I will attempt to redress this deciency. In doing so, I will improve upon a family of models that can be used to approximate the time of development and/or structure evolution in GBMs. The eventual goal is to incorporate Magnetic Resonance Imaging (MRI) data into a parameterized model of GBMs in such a way that it can be used clinically to predict tumor growth and behavior. Furthermore, I hope to come to a denitive conclusion as to the accuracy of the Koteslich et al. model throughout the development of GBMs tumors.
ContributorsManning, Miles (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Preul, Mark (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12