Matching Items (46)
128472-Thumbnail Image.png
Description

A central goal of biology is to uncover the genetic basis for the origin of new phenotypes. A particularly effective approach is to examine the genomic architecture of species that have secondarily lost a phenotype with respect to their close relatives. In the eusocial Hymenoptera, queens and workers have divergent

A central goal of biology is to uncover the genetic basis for the origin of new phenotypes. A particularly effective approach is to examine the genomic architecture of species that have secondarily lost a phenotype with respect to their close relatives. In the eusocial Hymenoptera, queens and workers have divergent phenotypes that may be produced via either expression of alternative sets of caste-specific genes and pathways or differences in expression patterns of a shared set of multifunctional genes. To distinguish between these two hypotheses, we investigated how secondary loss of the worker phenotype in workerless ant social parasites impacted genome evolution across two independent origins of social parasitism in the ant genera Pogonomyrmex and Vollenhovia. We sequenced the genomes of three social parasites and their most-closely related eusocial host species and compared gene losses in social parasites with gene expression differences between host queens and workers. Virtually all annotated genes were expressed to some degree in both castes of the host, with most shifting in queen-worker bias across developmental stages. As a result, despite >1 My of divergence from the last common ancestor that had workers, the social parasites showed strikingly little evidence of gene loss, damaging mutations, or shifts in selection regime resulting from loss of the worker caste. This suggests that regulatory changes within a multifunctional genome, rather than sequence differences, have played a predominant role in the evolution of social parasitism, and perhaps also in the many gains and losses of phenotypes in the social insects.

ContributorsSmith, Chris R. (Author) / Helms Cahan, Sara (Author) / Kemena, Carsten (Author) / Brady, Sean G. (Author) / Yang, Wei (Author) / Bornberg-Bauer, Erich (Author) / Eriksson, Ti (Author) / Gadau, Juergen (Author) / Helmkampf, Martin (Author) / Gotzek, Dietrich (Author) / Okamoto Miyakawa, Misato (Author) / Suarez, Andrew V. (Author) / Mikheyev, Alexander (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-07-29
128431-Thumbnail Image.png
Description

Rhesus macaques (Macaca mulatta) are the most widely used nonhuman primate in biomedical research, have the largest natural geographic distribution of any nonhuman primate, and have been the focus of much evolutionary and behavioral investigation. Consequently, rhesus macaques are one of the most thoroughly studied nonhuman primate species. However, little

Rhesus macaques (Macaca mulatta) are the most widely used nonhuman primate in biomedical research, have the largest natural geographic distribution of any nonhuman primate, and have been the focus of much evolutionary and behavioral investigation. Consequently, rhesus macaques are one of the most thoroughly studied nonhuman primate species. However, little is known about genome-wide genetic variation in this species. A detailed understanding of extant genomic variation among rhesus macaques has implications for the use of this species as a model for studies of human health and disease, as well as for evolutionary population genomics. Whole genome sequencing analysis of 133 rhesus macaques revealed >43.7 million single nucleotide variants, including thousands predicted to alter protein sequences, transcript splicing and transcription factor binding sites. Rhesus macaques exhibit 2.5-fold higher overall nucleotide diversity and slightly elevated putative functional variation compared with humans. This functional variation in macaques provides opportunities for analyses of coding and non-coding variation, and its cellular consequences. Despite modestly higher levels of non-synonymous variation in the macaques, the estimated distribution of fitness effects and the ratio of non-synonymous to synonymous variants suggest that purifying selection has had stronger effects in rhesus macaques than in humans. Demographic reconstructions indicate this species has experienced a consistently large but fluctuating population size. Overall, the results presented here provide new insights into the population genomics of nonhuman primates and expand genomic information directly relevant to primate models of human disease.

ContributorsXue, Cheng (Author) / Raveendran, Muthuswamy (Author) / Harris, R. Alan (Author) / Fawcett, Gloria L. (Author) / Liu, Xiaoming (Author) / White, Simon (Author) / Dahdouli, Mahmoud (Author) / Rio Deiros, David (Author) / Below, Jennifer E. (Author) / Salerno, William (Author) / Cox, Laura (Author) / Fan, Guoping (Author) / Ferguson, Betsy (Author) / Horvath, Julie (Author) / Johnson, Zach (Author) / Kanthaswamy, Sreetharan (Author) / Kubisch, H. Michael (Author) / Liu, Dahai (Author) / Platt, Michael (Author) / Smith, David G. (Author) / Sun, Binghua (Author) / Vallender, Eric J. (Author) / Wang, Feng (Author) / Wiseman, Roger W. (Author) / Chen, Rui (Author) / Muzny, Donna M. (Author) / Gibbs, Richard A. (Author) / Yu, Fuli (Author) / Rogers, Jeffrey (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-10-17
129687-Thumbnail Image.png
Description

Attributing observed CO2 variations to human or natural cause is critical to deducing and tracking emissions from observations. We have used in situ CO2, CO, and planetary boundary layer height (PBLH) measurements recorded during the CalNex-LA (CARB et al., 2008) ground campaign of 15 May-15 June 2010, in Pasadena, CA,

Attributing observed CO2 variations to human or natural cause is critical to deducing and tracking emissions from observations. We have used in situ CO2, CO, and planetary boundary layer height (PBLH) measurements recorded during the CalNex-LA (CARB et al., 2008) ground campaign of 15 May-15 June 2010, in Pasadena, CA, to deduce the diurnally varying anthropogenic component of observed CO2 in the megacity of Los Angeles (LA). This affordable and simple technique, validated by carbon isotope observations and WRF-STILT (Weather Research and Forecasting model - Stochastic Time-Inverted Lagrangian Transport model) predictions, is shown to robustly attribute observed CO2 variation to anthropogenic or biogenic origin over the entire diurnal cycle. During CalNex-LA, local fossil fuel combustion contributed up to similar to 50% of the observed CO2 enhancement overnight, and similar to 100% of the enhancement near midday. This suggests that sufficiently accurate total column CO2 observations recorded near midday, such as those from the GOSAT or OCO-2 satellites, can potentially be used to track anthropogenic emissions from the LA megacity.

ContributorsNewman, S. (Author) / Jeong, S. (Author) / Fischer, M.L. (Author) / Xu, X. (Author) / Haman, C.L. (Author) / Lefer, B. (Author) / Alvarez, S. (Author) / Rappenglueck, B. (Author) / Kort, E.A. (Author) / Andrews, A. E. (Author) / Peischl, J. (Author) / Gurney, Kevin (Author) / Miller, C.E. (Author) / Yung, Y.L. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-04-26
Description

Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality

Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats.

Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits.

Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.

ContributorsSadd, Ben M. (Author) / Barribeau, Seth M. (Author) / Bloch, Guy (Author) / de Graaf, Dirk C. (Author) / Dearden, Peter (Author) / Elsik, Christine G. (Author) / Gadau, Juergen (Author) / Grimmelikhuijzen, Cornelis J. P. (Author) / Hasselmann, Martin (Author) / Lozier, Jeffrey D. (Author) / Robertson, Hugh M. (Author) / Smagghe, Guy (Author) / Stolle, Eckart (Author) / Van Vaerenbergh, Matthias (Author) / Waterhouse, Robert M. (Author) / Bornberg-Bauer, Erich (Author) / Klasberg, Steffen (Author) / Bennett, Anna K. (Author) / Camara, Francisco (Author) / Guigo, Roderic (Author) / Hoff, Katharina (Author) / Mariotti, Marco (Author) / Munoz-Torres, Monica (Author) / Murphy, Terence (Author) / Santesmasses, Didac (Author) / Amdam, Gro (Author) / Beckers, Matthew (Author) / Beye, Martin (Author) / Biewer, Matthias (Author) / Bitondi, Marcia MG (Author) / Blaxter, Mark L. (Author) / Bourke, Andrew FG (Author) / Brown, Mark JF (Author) / Buechel, Severine D. (Author) / Cameron, Rossanah (Author) / Cappelle, Kaat (Author) / Carolan, James C. (Author) / Christiaens, Olivier (Author) / Ciborowski, Kate L. (Author) / Clarke, David F. (Author) / Colgan, Thomas J. (Author) / Collins, David H. (Author) / Cridge, Andrew G. (Author) / Dalmay, Tamas (Author) / Dreier, Stephanie (Author) / du Plessis, Louis (Author) / Duncan, Elizabeth (Author) / Erler, Silvio (Author) / Evans, Jay (Author) / Falcon, Talgo (Author) / Flores, Kevin (Author) / Freitas, Flavia CP (Author) / Fuchikawa, Taro (Author) / Gempe, Tanja (Author) / Hartfelder, Klaus (Author) / Hauser, Frank (Author) / Helbing, Sophie (Author) / Humann, Fernanda (Author) / Irvine, Frano (Author) / Jermiin, Lars S (Author) / Johnson, Claire E. (Author) / Johnson, Reed M (Author) / Jones, Andrew K. (Author) / Kadowaki, Tatsuhiko (Author) / Kidner, Jonathan H. (Author) / Koch, Vasco (Author) / Kohler, Arian (Author) / Kraus, F. Bernhard (Author) / Lattorff, H. Michael G. (Author) / Leask, Megan (Author) / Lockett, Gabrielle A. (Author) / Mallon, Eamonn B. (Author) / Marco Antonio, David S. (Author) / Marxer, Monika (Author) / Meeus, Ivan (Author) / Moritz, Robin FA (Author) / Nair, Ajay (Author) / Napflin, Kathrin (Author) / Nissen, Inga (Author) / Niu, Jinzhi (Author) / Nunes, Francis MF (Author) / Oakeshott, John G. (Author) / Osborne, Amy (Author) / Otte, Marianne (Author) / Pinheiro, Daniel G. (Author) / Rossie, Nina (Author) / Rueppell, Olav (Author) / Santos, Carolina G (Author) / Schmid-Hempel, Regula (Author) / Schmitt, Bjorn D. (Author) / Schulte, Christina (Author) / Simoes, Zila LP (Author) / Soares, Michelle PM (Author) / Swevers, Luc (Author) / Winnebeck, Eva C. (Author) / Wolschin, Florian (Author) / Yu, Na (Author) / Zdobnov, Evgeny M (Author) / Aqrawi, Peshtewani K (Author) / Blakenburg, Kerstin P (Author) / Coyle, Marcus (Author) / Francisco, Liezl (Author) / Hernandez, Alvaro G. (Author) / Holder, Michael (Author) / Hudson, Matthew E. (Author) / Jackson, LaRonda (Author) / Jayaseelan, Joy (Author) / Joshi, Vandita (Author) / Kovar, Christie (Author) / Lee, Sandra L. (Author) / Mata, Robert (Author) / Mathew, Tittu (Author) / Newsham, Irene F. (Author) / Ngo, Robin (Author) / Okwuonu, Geoffrey (Author) / Pham, Christopher (Author) / Pu, Ling-Ling (Author) / Saada, Nehad (Author) / Santibanez, Jireh (Author) / Simmons, DeNard (Author) / Thornton, Rebecca (Author) / Venkat, Aarti (Author) / Walden, Kimberly KO (Author) / Wu, Yuan-Qing (Author) / Debyser, Griet (Author) / Devreese, Bart (Author) / Asher, Claire (Author) / Blommaert, Julie (Author) / Chipman, Ariel D. (Author) / Chittka, Lars (Author) / Fouks, Bertrand (Author) / Liu, Jisheng (Author) / O'Neill, Meaghan P (Author) / Sumner, Seirian (Author) / Puiu, Daniela (Author) / Qu, Jiaxin (Author) / Salzberg, Steven L (Author) / Scherer, Steven E (Author) / Muzny, Donna M. (Author) / Richards, Stephen (Author) / Robinson, Gene E (Author) / Gibbs, Richard A. (Author) / Schmid-Hempel, Paul (Author) / Worley, Kim C (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-04-24
156901-Thumbnail Image.png
Description
Fossil fuel CO2 (FFCO2) emissions are recognized as the dominant greenhouse gas driving climate change (Enting et. al., 1995; Conway et al., 1994; Francey et al., 1995; Bousquet et. al., 1999). Transportation is a major component of FFCO2 emissions, especially in urban areas. An improved understanding of on-road FFCO2 emission

Fossil fuel CO2 (FFCO2) emissions are recognized as the dominant greenhouse gas driving climate change (Enting et. al., 1995; Conway et al., 1994; Francey et al., 1995; Bousquet et. al., 1999). Transportation is a major component of FFCO2 emissions, especially in urban areas. An improved understanding of on-road FFCO2 emission at high spatial resolution is essential to both carbon science and mitigation policy. Though considerable research has been accomplished within a few high-income portions of the planet such as the United States and Western Europe, little work has attempted to comprehensively quantify high-resolution on-road FFCO2 emissions globally. Key questions for such a global quantification are: (1) What are the driving factors for on-road FFCO2 emissions? (2) How robust are the relationships? and (3) How do on-road FFCO2 emissions vary with urban form at fine spatial scales?

This study used urban form/socio-economic data combined with self-reported on-road FFCO2 emissions for a sample of global cities to estimate relationships within a multivariate regression framework based on an adjusted STIRPAT model. The on-road high-resolution (whole-city) regression FFCO2 model robustness was evaluated by introducing artificial error, conducting cross-validation, and assessing relationship sensitivity under various model specifications. Results indicated that fuel economy, vehicle ownership, road density and population density were statistically significant factors that correlate with on-road FFCO2 emissions. Of these four variables, fuel economy and vehicle ownership had the most robust relationships.

A second regression model was constructed to examine the relationship between global on-road FFCO2 emissions and urban form factors (described by population

ii

density, road density, and distance to activity centers) at sub-city spatial scales (1 km2). Results showed that: 1) Road density is the most significant (p<2.66e-037) predictor of on-road FFCO2 emissions at the 1 km2 spatial scale; 2) The correlation between population density and on-road FFCO2 emissions for interstates/freeways varies little by city type. For arterials, on-road FFCO2 emissions show a stronger relationship to population density in clustered cities (slope = 0.24) than dispersed cities (slope = 0.13). FFCO2 3) The distance to activity centers has a significant positive relationship with on-road FFCO2 emission for the interstate and freeway toad types, but an insignificant relationship with the arterial road type.
ContributorsSong, Yang (Author) / Gurney, Kevin (Thesis advisor) / Kuby, Michael (Committee member) / Golub, Aaron (Committee member) / Chester, Mikhail (Committee member) / Selover, Nancy (Committee member) / Arizona State University (Publisher)
Created2018
128096-Thumbnail Image.png
Description

The objective of the Indianapolis Flux Experiment (INFLUX) is to develop, evaluate and improve methods for measuring greenhouse gas (GHG) emissions from cities. INFLUX’s scientific objectives are to quantify CO2 and CH4 emission rates at 1 km2 resolution with a 10% or better accuracy and precision, to determine whole-city emissions

The objective of the Indianapolis Flux Experiment (INFLUX) is to develop, evaluate and improve methods for measuring greenhouse gas (GHG) emissions from cities. INFLUX’s scientific objectives are to quantify CO2 and CH4 emission rates at 1 km2 resolution with a 10% or better accuracy and precision, to determine whole-city emissions with similar skill, and to achieve high (weekly or finer) temporal resolution at both spatial resolutions. The experiment employs atmospheric GHG measurements from both towers and aircraft, atmospheric transport observations and models, and activity-based inventory products to quantify urban GHG emissions. Multiple, independent methods for estimating urban emissions are a central facet of our experimental design. INFLUX was initiated in 2010 and measurements and analyses are ongoing. To date we have quantified urban atmospheric GHG enhancements using aircraft and towers with measurements collected over multiple years, and have estimated whole-city CO2 and CH4 emissions using aircraft and tower GHG measurements, and inventory methods. Significant differences exist across methods; these differences have not yet been resolved; research to reduce uncertainties and reconcile these differences is underway. Sectorally- and spatially-resolved flux estimates, and detection of changes of fluxes over time, are also active research topics. Major challenges include developing methods for distinguishing anthropogenic from biogenic CO2 fluxes, improving our ability to interpret atmospheric GHG measurements close to urban GHG sources and across a broader range of atmospheric stability conditions, and quantifying uncertainties in inventory data products. INFLUX data and tools are intended to serve as an open resource and test bed for future investigations. Well-documented, public archival of data and methods is under development in support of this objective.

ContributorsDavis, Kenneth J. (Author) / Deng, Aijun (Author) / Lauvaux, Thomas (Author) / Miles, Natasha L. (Author) / Richardson, Scott J. (Author) / Sarmiento, Daniel P. (Author) / Gurney, Kevin (Author) / Hardesty, R. Michael (Author) / Bonin, Timothy A. (Author) / Brewer, W. Alan (Author) / Lamb, Brian K. (Author) / Shepson, Paul B. (Author) / Harvey, Rebecca M. (Author) / Cambaliza, Maria O. (Author) / Sweeney, Colm (Author) / Turnbull, Jocelyn C. (Author) / Whetstone, James (Author) / Karion, Anna (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-23