Matching Items (64)
156764-Thumbnail Image.png
Description
Amongst the most studied of the social insects, the honey bee has a prominent place due to its economic importance and influence on human societies. Honey bee colonies can have over 50,000 individuals, whose activities are coordinated by chemical signals called pheromones. Because these pheromones are secreted from various exocrine

Amongst the most studied of the social insects, the honey bee has a prominent place due to its economic importance and influence on human societies. Honey bee colonies can have over 50,000 individuals, whose activities are coordinated by chemical signals called pheromones. Because these pheromones are secreted from various exocrine glands, the proper development and function of these glands are vital to colony dynamics. In this thesis, I present a study of the developmental ontogeny of the exocrine glands found in the head of the honey bee. In Chapter 2, I elucidate how the larval salivary gland transitions to an adult salivary gland through apoptosis and cell growth, differentiation and migration. I also explain the development of the hypopharyngeal and the mandibular gland using apoptotic markers and cytoskeletal markers like tubulin and actin. I explain the fundamental developmental plan for the formation of the glands and show that apoptosis plays an important role in the transformation toward an adult gland.
ContributorsNath, Rachna (Author) / Gadau, Juergen (Thesis advisor) / Rawls, Alan (Committee member) / Harrison, Jon (Committee member) / Arizona State University (Publisher)
Created2018
156767-Thumbnail Image.png
Description
Reproduction is energetically costly and seasonal breeding has evolved to capitalize on predictable increases in food availability. The synchronization of breeding with periods of peak food availability is especially important for small birds, most of which do not store an extensive amount of energy. The annual change in photoperiod is

Reproduction is energetically costly and seasonal breeding has evolved to capitalize on predictable increases in food availability. The synchronization of breeding with periods of peak food availability is especially important for small birds, most of which do not store an extensive amount of energy. The annual change in photoperiod is the primary environmental cue regulating reproductive development, but must be integrated with supplementary cues relating to local energetic conditions. Photoperiodic regulation of the reproductive neuroendocrine system is well described in seasonally breeding birds, but the mechanisms that these animals use to integrate supplementary cues remain unclear. I hypothesized that (a) environmental cues that negatively affect energy balance inhibit reproductive development by acting at multiple levels along the reproductive endocrine axis including the hypothalamus (b) that the availability of metabolic fuels conveys alterations in energy balance to the reproductive system. I investigated these hypotheses in male house finches, Haemorhous mexicanus, caught in the wild and brought into captivity. I first experimentally reduced body condition through food restriction and found that gonadal development and function are inhibited and these changes are associated with changes in hypothalamic gonadotropin-releasing hormone (GnRH). I then investigated this neuroendocrine integration and found that finches maintain reproductive flexibility through modifying the release of accumulated GnRH stores in response to energetic conditions. Lastly, I investigated the role of metabolic fuels in coordinating reproductive responses under two different models of negative energy balance, decreased energy intake (food restriction) and increased energy expenditure (high temperatures). Exposure to high temperatures lowered body condition and reduced food intake. Reproductive development was inhibited under both energy challenges, and occurred with decreased gonadal gene expression of enzymes involved in steroid synthesis. Minor changes in fuel utilization occurred under food restriction but not high temperatures. My results support the hypothesis that negative energy balance inhibits reproductive development through multilevel effects on the hypothalamus and gonads. These studies are among the first to demonstrate a negative effect of high temperatures on reproductive development in a wild bird. Overall, the above findings provide important foundations for investigations into adaptive responses of breeding in energetically variable environments.
ContributorsValle, Shelley (Author) / Deviche, Pierre (Thesis advisor) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Propper, Catherine (Committee member) / Sweazea, Karen (Committee member) / Arizona State University (Publisher)
Created2018
154916-Thumbnail Image.png
Description
Why do many animals possess multiple classes of photoreceptors that vary in the wavelengths of light to which they are sensitive? Multiple spectral photoreceptor classes are a requirement for true color vision. However, animals may have unconventional vision, in which multiple spectral channels broaden the range of wavelengths that can

Why do many animals possess multiple classes of photoreceptors that vary in the wavelengths of light to which they are sensitive? Multiple spectral photoreceptor classes are a requirement for true color vision. However, animals may have unconventional vision, in which multiple spectral channels broaden the range of wavelengths that can be detected, or in which they use only a subset of receptors for specific behaviors. Branchiopod crustaceans are of interest for the study of unconventional color vision because they express multiple visual pigments in their compound eyes, have a simple repertoire of visually guided behavior, inhabit unique and highly variable light environments, and possess secondary neural simplifications. I first tested the behavioral responses of two representative species of branchiopods from separate orders, Streptocephalus mackini Anostracans (fairy shrimp), and Triops longicaudatus Notostracans (tadpole shrimp). I found that they maintain vertical position in the water column over a broad range of intensities and wavelengths, and respond behaviorally even at intensities below those of starlight. Accordingly, light intensities of their habitats at shallow depths tend to be dimmer than terrestrial habitats under starlight. Using models of how their compound eyes and the first neuropil of their optic lobe process visual cues, I infer that both orders of branchiopods use spatial summation from multiple compound eye ommatidia to respond at low intensities. Then, to understand if branchiopods use unconventional vision to guide these behaviors, I took electroretinographic recordings (ERGs) from their compound eyes and used models of spectral absorptance for a multimodel selection approach to make inferences about the number of photoreceptor classes in their eyes. I infer that both species have four spectral classes of photoreceptors that contribute to their ERGs, suggesting unconventional vision guides the described behavior. I extended the same modeling approach to other organisms, finding that the model inferences align with the empirically determined number of photoreceptor classes for this diverse set of organisms. This dissertation expands the conceptual framework of color vision research, indicating unconventional vision is more widespread than previously considered, and explains why some organisms have more spectral classes than would be expected from their behavioral repertoire.
ContributorsLessios, Nicolas (Author) / Rutowski, Ronald L (Thesis advisor) / Cohen, Jonathan H (Thesis advisor) / Harrison, John (Committee member) / Neuer, Susanne (Committee member) / McGraw, Kevin (Committee member) / Arizona State University (Publisher)
Created2016
152461-Thumbnail Image.png
Description
Foraging has complex effects on whole-organism homeostasis, and there is considerable evidence that foraging behavior is influenced by both environmental factors (e.g., food availability, predation risk) and the physiological condition of an organism. The optimization of foraging behavior to balance costs and benefits is termed state-dependent foraging (SDF) while behavior

Foraging has complex effects on whole-organism homeostasis, and there is considerable evidence that foraging behavior is influenced by both environmental factors (e.g., food availability, predation risk) and the physiological condition of an organism. The optimization of foraging behavior to balance costs and benefits is termed state-dependent foraging (SDF) while behavior that seeks to protect assets of fitness is termed the asset protection principle (APP). A majority of studies examining SDF have focused on the role that energy balance has on the foraging of organisms with high metabolism and high energy demands ("high-energy systems" such as endotherms). In contrast, limited work has examined whether species with low energy use ("low-energy systems" such as vertebrate ectotherms) use an SDF strategy. Additionally, there is a paucity of evidence demonstrating how physiological and environmental factors other than energy balance influence foraging behavior (e.g. hydration state and free-standing water availability). Given these gaps in our understanding of SDF behavior and the APP, I examined the state-dependency and consequences of foraging in a low-energy system occupying a resource-limited environment - the Gila monster (Heloderma suspectum, Cope 1869). In contrast to what has been observed in a wide variety of taxa, I found that Gila monsters do not use a SDF strategy to manage their energy reserves and that Gila monsters do not defend their energetic assets. However, hydration state and free-standing water availability do affect foraging behavior of Gila monsters. Additionally, as Gila monsters become increasingly dehydrated, they reduce activity to defend hydration state. The SDF behavior of Gila monsters appears to be largely driven by the fact that Gila monsters must separately satisfy energy and water demands with food and free-standing water, respectively, in conjunction with the timescale within which Gila monsters balance their energy and water budgets (supra-annually versus annually, respectively). Given these findings, the impact of anticipated changes in temperature and rainfall patterns in the Sonoran Desert are most likely going to pose their greatest risks to Gila monsters through the direct and indirect effects on water balance.
ContributorsWright, Christian (Author) / Denardo, Dale F. (Thesis advisor) / Harrison, Jon (Committee member) / McGraw, Kevin (Committee member) / Sullivan, Brian (Committee member) / Wolf, Blair (Committee member) / Arizona State University (Publisher)
Created2014
153365-Thumbnail Image.png
Description
Warning coloration deters predators from attacking prey that are defended, usually by being distasteful, toxic, or otherwise costly for predators to pursue and consume. Predators may have an innate response to warning colors or learn to associate them with a defense through trial and error. In general, predators should select

Warning coloration deters predators from attacking prey that are defended, usually by being distasteful, toxic, or otherwise costly for predators to pursue and consume. Predators may have an innate response to warning colors or learn to associate them with a defense through trial and error. In general, predators should select for warning signals that are easy to learn and recognize. Previous research demonstrates long-wavelength colors (e.g. red and yellow) are effective because they are readily detected and learned. However, a number of defended animals display short-wavelength coloration (e.g. blue and violet), such as the pipevine swallowtail butterfly (Battus philenor). The role of blue coloration in warning signals had not previously been explicitly tested. My research showed in laboratory experiments that curve-billed thrashers (Toxostoma curvirostre) and Gambel's quail (Callipepla gambelii) can learn and recognize the iridescent blue of B. philenor as a warning signal and that it is innately avoided. I tested the attack rates of these colors in the field and blue was not as effective as orange. I concluded that blue colors may function as warning signals, but the effectiveness is likely dependent on the context and predator.

Blue colors are often iridescent in nature and the effect of iridescence on warning signal function was unknown. I reared B. philenor larvae under varied food deprivation treatments. Iridescent colors did not have more variation than pigment-based colors under these conditions; variation which could affect predator learning. Learning could also be affected by changes in appearance, as iridescent colors change in both hue and brightness as the angle of illuminating light and viewer change in relation to the color surface. Iridescent colors can also be much brighter than pigment-based colors and iridescent animals can statically display different hues. I tested these potential effects on warning signal learning by domestic chickens (Gallus gallus domesticus) and found that variation due to the directionality of iridescence and a brighter warning signal did not influence learning. However, blue-violet was learned more readily than blue-green. These experiments revealed that the directionality of iridescent coloration does not likely negatively affect its potential effectiveness as a warning signal.
ContributorsPegram, Kimberly Vann (Author) / Rutowski, Ronald L (Thesis advisor) / Hoelldobler, Berthold (Committee member) / Liebig, Juergen (Committee member) / McGraw, Kevin (Committee member) / Smith, Brian H. (Committee member) / Arizona State University (Publisher)
Created2015
153699-Thumbnail Image.png
Description
The Great Bustard (Otis tarda) is an iconic species of the temperate grasslands of Europe and Asia, a habitat that is among the least protected ecosystems in the world. A distinct subspecies, the Asian Great Bustard (O. t. dybowskii), is poorly understood due to its wary nature and remote range

The Great Bustard (Otis tarda) is an iconic species of the temperate grasslands of Europe and Asia, a habitat that is among the least protected ecosystems in the world. A distinct subspecies, the Asian Great Bustard (O. t. dybowskii), is poorly understood due to its wary nature and remote range in Siberia, Mongolia, and northern China. This subspecies is now endangered by rapid development.

Using satellite telemetry and remote sensing, I investigated three aspects of the Asian Great Bustard’s ecology critical to its conservation: migratory routes, migratory cues, and habitat use patterns. I found that Asian Great Bustards spent one-third of the year on a 2000 km migratory pathway, a distance twice as far as has previously been recorded for the species. Tracked individuals moved nomadically over large winter territories and did not repeat migratory stopovers, complicating conservation planning. Migratory timing was variable and migratory movements were significantly correlated with weather cues. Specifically, bustards migrated on days when wind support was favorable and temperature presaged warmer temperatures on the breeding grounds (spring) or advancing winter weather (fall). On the breeding grounds, Asian Great Bustards used both steppe and wheat agriculture habitat. All recorded reproductive attempts failed, regardless of habitat in which the nest was placed. Agricultural practices are likely to intensify in the coming decade, which would present further challenges to reproduction. The distinct migratory behavior and habitat use patterns of the Asian Great Bustard are likely adaptations to the climate and ecology of Inner Asia and underscore the importance of conserving these unique populations.

My research indicates that conservation of the Asian Great Bustard will require a landscape-level approach. This approach should incorporate measures at the breeding grounds to raise reproductive success, alongside actions on the migratory pathway to ensure appropriate habitat and reduce adult mortality. To secure international cooperation, I proposed that an increased level of protection should be directed toward the Great Bustard under the Convention on Migratory Species (CMS). That proposal, accepted by the Eleventh Conference of Parties to CMS, provides recommendations for conservation action and illustrates the transdisciplinary approach I have taken in this research.
ContributorsKessler, Aimee (Author) / Smith, Andrew T. (Thesis advisor) / Brown, David (Committee member) / Franklin, Janet (Committee member) / McGraw, Kevin (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2015
153216-Thumbnail Image.png
Description
For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance

For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance of food availability has been appreciated for decades, the physiological mechanisms underlying the modulation of seasonal gonad growth by this environmental factor remain poorly understood.

Urbanization is characterized by profound environmental changes, and urban animals must adjust to an environment vastly different from that of their non-urban conspecifics. Evidence suggests that birds adjust to urban areas by advancing the timing of seasonal breeding and gonad development, compared to their non-urban conspecifics. A leading hypothesis to account for this phenomenon is that food availability is elevated in urban areas, which improves the energetic status of urban birds and enables them to initiate gonad development earlier than their non-urban conspecifics. However, this hypothesis remains largely untested.

My dissertation dovetailed comparative studies and experimental approaches conducted in field and captive settings to examine the physiological mechanisms by which food availability modulates gonad growth and to investigate whether elevated food availability in urban areas advances the phenology of gonad growth in urban birds. My captive study demonstrated that energetic status modulates reproductive hormone secretion, but not gonad growth. By contrast, free-ranging urban and non-urban birds did not differ in energetic status or plasma levels of reproductive hormones either in years in which urban birds had advanced phenology of gonad growth or in a year that had no habitat-related disparity in seasonal gonad growth. Therefore, my dissertation provides no support for the hypothesis that urban birds begin seasonal gonad growth because they are in better energetic status and increase the secretion of reproductive hormones earlier than non-urban birds. My studies do suggest, however, that the phenology of key food items and the endocrine responsiveness of the reproductive system may contribute to habitat-related disparities in the phenology of gonad growth.
ContributorsDavies, Scott (Author) / Deviche, Pierre (Thesis advisor) / Sweazea, Karen (Committee member) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Warren, Paige (Committee member) / Arizona State University (Publisher)
Created2014
153154-Thumbnail Image.png
Description
During the 1960s, the long-standing idea that traits or behaviors could be

explained by natural selection acting on traits that persisted "for the good of the group" prompted a series of debates about group-level selection and the effectiveness with which natural selection could act at or across multiple levels of biological

During the 1960s, the long-standing idea that traits or behaviors could be

explained by natural selection acting on traits that persisted "for the good of the group" prompted a series of debates about group-level selection and the effectiveness with which natural selection could act at or across multiple levels of biological organization. For some this topic remains contentious, while others consider the debate settled, even while disagreeing about when and how resolution occurred, raising the question: "Why have these debates continued?"

Here I explore the biology, history, and philosophy of the possibility of natural selection operating at levels of biological organization other than the organism by focusing on debates about group-level selection that have occurred since the 1960s. In particular, I use experimental, historical, and synthetic methods to review how the debates have changed, and whether different uses of the same words and concepts can lead to different interpretations of the same experimental data.

I begin with the results of a group-selection experiment I conducted using the parasitoid wasp Nasonia, and discuss how the interpretation depends on how one conceives of and defines a "group." Then I review the history of the group selection controversy and argue that this history is best interpreted as multiple, interrelated debates rather than a single continuous debate. Furthermore, I show how the aspects of these debates that have changed the most are related to theoretical content and empirical data, while disputes related to methods remain largely unchanged. Synthesizing this material, I distinguish four different "approaches" to the study of multilevel selection based on the questions and methods used by researchers, and I use the results of the Nasonia experiment to discuss how each approach can lead to different interpretations of the same experimental data. I argue that this realization can help to explain why debates about group and multilevel selection have persisted for nearly sixty years. Finally, the conclusions of this dissertation apply beyond evolutionary biology by providing an illustration of how key concepts can change over time, and how failing to appreciate this fact can lead to ongoing controversy within a scientific field.
ContributorsDimond, Christopher C (Author) / Collins, James P. (Thesis advisor) / Gadau, Juergen (Committee member) / Laubichler, Manfred (Committee member) / Armendt, Brad (Committee member) / Lynch, John (Committee member) / Arizona State University (Publisher)
Created2014
156201-Thumbnail Image.png
Description
For interspecific mutualisms, the behavior of one partner can influence the fitness of the other, especially in the case of symbiotic mutualisms where partners live in close physical association for much of their lives. Behavioral effects on fitness may be particularly important if either species in these long-term relationships displays

For interspecific mutualisms, the behavior of one partner can influence the fitness of the other, especially in the case of symbiotic mutualisms where partners live in close physical association for much of their lives. Behavioral effects on fitness may be particularly important if either species in these long-term relationships displays personality. Animal personality is defined as repeatable individual differences in behavior, and how correlations among these consistent traits are structured is termed behavioral syndromes. Animal personality has been broadly documented across the animal kingdom but is poorly understood in the context of mutualisms. My dissertation focuses on the structure, causes, and consequences of collective personality in Azteca constructor colonies that live in Cecropia trees, one of the most successful and prominent mutualisms of the neotropics. These pioneer plants provide hollow internodes for nesting and nutrient-rich food bodies; in return, the ants provide protection from herbivores and encroaching vines. I first explored the structure of the behavioral syndrome by testing the consistency and correlation of colony-level behavioral traits under natural conditions in the field. Traits were both consistent within colonies and correlated among colonies revealing a behavioral syndrome along a docile-aggressive axis. Host plants of more active, aggressive colonies had less leaf damage, suggesting a link between a colony personality and host plant health. I then studied how aspects of colony sociometry are intertwined with their host plants by assessing the relationship among plant growth, colony growth, colony structure, ant morphology, and colony personality. Colony personality was independent of host plant measures like tree size, age, volume. Finally, I tested how colony personality influenced by soil nutrients by assessing personality in the field and transferring colonies to plants the greenhouse under different soil nutrient treatments. Personality was correlated with soil nutrients in the field but was not influenced by soil nutrient treatment in the greenhouse. This suggests that soil nutrients interact with other factors in the environment to structure personality. This dissertation demonstrates that colony personality is an ecologically relevant phenomenon and an important consideration for mutualism dynamics.
ContributorsMarting, Peter (Author) / Pratt, Stephen C (Thesis advisor) / Wcislo, William T (Committee member) / Hoelldobler, Bert (Committee member) / Fewell, Jennifer H (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2018
155697-Thumbnail Image.png
Description
Many animals thermoregulate to maximize performance. However, interactions with other animals, such as competitors or predators, limit access to preferred microclimates. For instance, an animal may thermoregulate poorly when fighting rivals or avoiding predators. However, the distribution of thermal resources should influence how animals perceive and respond to risk. When

Many animals thermoregulate to maximize performance. However, interactions with other animals, such as competitors or predators, limit access to preferred microclimates. For instance, an animal may thermoregulate poorly when fighting rivals or avoiding predators. However, the distribution of thermal resources should influence how animals perceive and respond to risk. When thermal resources are concentrated in space, individuals compete for access, which presumably reduces the thermoregulatory performance while making their location more predictable to predators. Conversely, when thermal resources are dispersed, several individuals can thermoregulate effectively without occupying the same area. Nevertheless, interactions with competitors or predators impose a potent stress, often resulting in both behavioral and physiological changes that influence thermoregulation. To assess the costs of intraspecific competition and predation risk during thermoregulation, I measured thermoregulation, movement, and hormones of male lizards (Sceloporus jarrovi) in experiment landscapes, with clumped to patchy distributions of microclimates. I found lizards aggressively competed for access to microclimates, with larger males gaining priority access when thermal resources were aggregated. Competition reduced thermoregulatory performance, increased movements, and elevated plasma corticosterone in large and small males. However, the magnitude of these responses decreased as the patchiness of the thermal environment increased. Similarly, under simulated predation risk, lizards reduced thermoregulatory performance, decreased movements, and elevated plasma corticosterone. Again, with the magnitude of these responses decreased with increasing thermal patchiness. Interestingly, even without competitors or predators, lizards in clumped arenas moved greater distances and circulated more corticosterone than did lizards in patchy arenas, indicating the thermal quality of the thermal landscape affected the energetic demands on lizards. Thus, biologists should consider species interactions and spatial structure when modeling impacts of climate change on thermoregulation.
ContributorsRusch, Travis W (Author) / Angilletta, Michael (Thesis advisor) / Sears, Mike (Committee member) / DeNardo, Dale (Committee member) / Deviche, Pierre (Committee member) / McGraw, Kevin (Committee member) / Arizona State University (Publisher)
Created2017