Matching Items (100)
151927-Thumbnail Image.png
Description
INTRODUCTION: Exercise performed at moderate to vigorous intensities has been shown to generate a post exercise hypotensive response. Whether this response is observed with very low exercise intensities is unclear. PURPOSE: To compare post physical activity ambulatory blood pressure (ABP) response to a single worksite walking day and a normal

INTRODUCTION: Exercise performed at moderate to vigorous intensities has been shown to generate a post exercise hypotensive response. Whether this response is observed with very low exercise intensities is unclear. PURPOSE: To compare post physical activity ambulatory blood pressure (ABP) response to a single worksite walking day and a normal sedentary work day in pre-hypertensive adults. METHODS: Participants were 7 pre-hypertensive (127 + 8 mmHg / 83 + 8 mmHg) adults (3 male, 4 female, age = 42 + 12 yr) who participated in a randomized, cross-over study that included a control and a walking treatment. Only those who indicated regularly sitting at least 8 hours/day and no structured physical activity were enrolled. Treatment days were randomly assigned and were performed one week apart. Walking treatment consisted of periodically increasing walk time up to 2.5 hours over the course of an 8 hour work day on a walking workstation (Steelcase Company, Grand Rapids, MI). Walk speed was set at 1 mph. Participants wore an ambulatory blood pressure cuff (Oscar 2, SunTech Medical, Morrisville, NC) for 24-hours on both treatment days. Participants maintained normal daily activities on the control day. ABP data collected from 9:00 am until 10:00 pm of the same day were included in statistical analyses. Linear mixed models were used to detect differences in systolic (SBP) and diastolic blood pressure (DBP) by treatment condition over the whole day and post workday for the time periods between 4 -10 pm when participants were no longer at work. RESULTS:BP was significantly lower in response to the walking treatment compared to the control day (Mean SBP 126 +7 mmHg vs.124 +7 mmHg, p=.043; DBP 80 + 3 mmHg vs. 77 + 3 mmHg, p = 0.001 respectively). Post workday (4:00 to 10:00 pm) SBP decreased 3 mmHg (p=.017) and DBP decreased 4 mmHg (p<.001) following walking. CONCLUSION: Even low intensity exercise such as walking on a walking workstation is effective for significantly reducing acute BP when compared to a normal work day.
ContributorsZeigler, Zachary (Author) / Swan, Pamela (Thesis advisor) / Buman, Matthew (Committee member) / Gaesser, Glenn (Committee member) / Arizona State University (Publisher)
Created2013
152062-Thumbnail Image.png
Description
Eccentric muscle action (ECC) occurs when the force exerted by a working muscle is less than that of an outside resistance. This is characterized by muscle lengthening, despite actin-myosin crossbridge formation. Research has indicated that muscles acting eccentrically are capable of producing more force when compared to muscles acting concentrically.

Eccentric muscle action (ECC) occurs when the force exerted by a working muscle is less than that of an outside resistance. This is characterized by muscle lengthening, despite actin-myosin crossbridge formation. Research has indicated that muscles acting eccentrically are capable of producing more force when compared to muscles acting concentrically. Further, research has shown ECC muscle actions may have different fatigue patterns that CON actions. The purpose of this study was to determine if a) ECC bench press yields greater strength than concentric (CON) as measured by one-repetition maximum (1RM), b) there is a difference between the number of repetitions that can be completed concentrically and eccentrically under the same relative intensities of 1RM (90%, 80%, 70%, 60%), c) a prediction model may be able to predict ECC 1RM from CON 1RM or CON repetitions to fatigue. For this study, 30 healthy males (age = 24.63 + 5.6 years) were tested for 1RM in CON and ECC bench press, as well as the number of repetitions they were able to complete at various intensities of mode-specific 1RM. A mechanical hoist was affixed to a gantry crane and placed over a standard weightlifting bench. The hoist was connected to 45lb plates that were loaded on a standard barbell, which allowed for mechanical raising and lowering of the barbell. For CON repetitions, the weight was mechanically lowered to the chest and the participant pressed it up. For ECC repetitions, the weight was mechanically raised and the participant lowered it. Paired t-tests showed that ECC 1RM was significantly (p < 0.05) greater than CON 1RM (ECC =255.17 + 68.37lbs, CON = 205.83 + 58.43lbs). There was a significant difference (p < 0.05) between the number of repetitions completed at 90% 1RM (CON = 4.57 + 2.21 repetitions, ECC = 7.67 + 3.24 repetitions). There were no differences in repetitions completed at any other intensity 1RM. CON 1RM and the number of repetitions completed with two different absolute loads (130-150lbs and 155-175lbs) concentrically and eccentrically were valid predictors of ECC 1RM. These data indicate that ECC actions yield increased force capabilities than CON actions, there is no difference in the rate of the fatigue, and ECC 1RM may be predicted from various CON tests.
ContributorsKelly, Stephen B., Jr (Author) / Hooker, Steven (Thesis advisor) / Brown, Lee (Committee member) / Buman, Matthew (Committee member) / Gaesser, Glenn (Committee member) / Swan, Pamela (Committee member) / Arizona State University (Publisher)
Created2013
150749-Thumbnail Image.png
Description
Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients,

Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients, such as iron, copper, and molybdenum. This work investigated the effects of BSC activity on soil solution concentrations of bioessential elements and examined the microbial production of organic chelators, called siderophores. I found that aluminum, vanadium, copper, zinc, and molybdenum were solubilized in the action of crusts, while nickel, zinc, arsenic, and zirconium were immobilized by crust activity. Potassium and manganese displayed behavior consistent with biological removal and mobilization, whereas phosphorus and iron solubility were dominated by abiotic processes. The addition of bioavailable nitrogen altered the effects of BSCs on soil element mobilization. In addition, I found that the biogeochemical activites of BSCs were limited by molybdenum, a fact that likely contributes to co-limitation by nitrogen. I confirmed the presence of siderophore producing microbes in BSCs. Siderophores are low-molecular weight organic compounds that are released by bacteria to increase element solubility and facilitate element uptake; siderophore production is likely the mechanism by which BSCs affect the patterns I observed in soil solution element concentrations. Siderophore producers were distributed across a range of bacterial groups and ecological niches within crusts, suggesting that siderophore production influences the availability of a variety of elements for use in many physiological processes. Four putative siderophore compounds were identified using electrospray ionization mass spectrometry; further attempts to characterize the compounds confirmed two true siderophores. Taken together, the results of my work provide information about micronutrient cycling within crusts that can be applied to BSC conservation and management. Fertilization with certain elements, particularly molybdenum, may prove to be a useful technique to promote BSC growth and development which would help prevent arid land degradation. Furthermore, understanding the effects of BSCs on soil element mobility could be used to develop useful biomarkers for the study of the existence and distribution of crust-like communities on ancient Earth, and perhaps other places, like Mars.
ContributorsNoonan, Kathryn Alexander (Author) / Hartnett, Hilairy (Thesis advisor) / Anbar, Ariel (Committee member) / Garcia-Pichel, Ferran (Committee member) / Shock, Everett (Committee member) / Sharp, Thomas (Committee member) / Arizona State University (Publisher)
Created2012
150779-Thumbnail Image.png
Description
Ponderosa pine forests are a dominant land cover type in semiarid montane areas. Water supplies in major rivers of the southwestern United States depend on ponderosa pine forests since these ecosystems: (1) receive a significant amount of rainfall and snowfall, (2) intercept precipitation and transpire water, and (3) indirectly influence

Ponderosa pine forests are a dominant land cover type in semiarid montane areas. Water supplies in major rivers of the southwestern United States depend on ponderosa pine forests since these ecosystems: (1) receive a significant amount of rainfall and snowfall, (2) intercept precipitation and transpire water, and (3) indirectly influence runoff by impacting the infiltration rate. However, the hydrologic patterns in these ecosystems with strong seasonality are poorly understood. In this study, we used a distributed hydrologic model evaluated against field observations to improve our understandings on spatial controls of hydrologic patterns, appropriate model resolution to simulate ponderosa pine ecosystems and hydrologic responses in the context of contrasting winter to summer transitions. Our modeling effort is focused on the hydrologic responses during the North American Monsoon (NAM), winter and spring periods. In Chapter 2, we utilized a distributed model explore the spatial controls on simulated soil moisture and temporal evolution of these spatial controls as a function of seasonal wetness. Our findings indicate that vegetation and topographic curvature are spatial controls. Vegetation controlled patterns during dry summer period switch to fine-scale terrain curvature controlled patterns during persistently wet NAM period. Thus, a climatic threshold involving rainfall and weather conditions during the NAM is identified when high rainfall amount (such as 146 mm rain in August, 1997) activates lateral flux of soil moisture and frequent cloudy cover (such as 42% cloud cover during daytime of August, 1997) lowers evapotranspiration. In Chapter 3, we investigate the impacts of model coarsening on simulated soil moisture patterns during the NAM. Results indicate that model aggregation quickly eradicates curvature features and its spatial control on hydrologic patterns. A threshold resolution of ~10% of the original terrain is identified through analyses of homogeneity indices, correlation coefficients and spatial errors beyond which the fidelity of simulated soil moisture is no longer reliable. Based on spatial error analyses, we detected that the concave areas (~28% of hillslope) are very sensitive to model coarsening and root mean square error (RMSE) is higher than residual soil moisture content (~0.07 m3/m3 soil moisture) for concave areas. Thus, concave areas need to be sampled for capturing appropriate hillslope response for this hillslope. In Chapter 4, we investigate the impacts of contrasting winter to summer transitions on hillslope hydrologic responses. We use a distributed hydrologic model to generate a consistent set of high-resolution hydrologic estimates. Our model is evaluated against the snow depth, soil moisture and runoff observations over two water years yielding reliable spatial distributions during the winter to summer transitions. We find that a wet winter followed by a dry summer promotes evapotranspiration losses (spatial averaged ~193 mm spring ET and ~ 600 mm summer ET) that dry the soil and disconnect lateral fluxes in the forested hillslope, leading to soil moisture patterns resembling vegetation patches. Conversely, a dry winter prior to a wet summer results in soil moisture increases due to high rainfall and low ET during the spring (spatially averaged 78 mm ET and 232 mm rainfall) and summer period (spatially averaged 147 mm ET and 247 mm rainfall) which promote lateral connectivity and soil moisture patterns with the signature of terrain curvature. An opposing temporal switch between infiltration and saturation excess runoff is also identified. These contrasting responses indicate that the inverse relation has significant consequences on hillslope water availability and its spatial distribution with implications on other ecohydrological processes including vegetation phenology, groundwater recharge and geomorphic development. Results from this work have implications on the design of hillslope experiments, the resolution of hillslope scale models, and the prediction of hydrologic conditions in ponderosa pine ecosystems. In addition, our findings can be used to select future hillslope sites for detailed ecohydrological investigations. Further, the proposed methodology can be useful for predicting responses to climate and land cover changes that are anticipated for the southwestern United States.
ContributorsMahmood, Taufique Hasan (Author) / Vivoni, Enrique R. (Thesis advisor) / Whipple, Kelin X. (Committee member) / Shock, Everett (Committee member) / Heimsath, Arjun M. (Committee member) / Ruddell, Benjamin (Committee member) / Arizona State University (Publisher)
Created2012
151223-Thumbnail Image.png
Description
Early spacecraft missions to Mars, including the Marnier and Viking orbiters and landers revealed a morphologically and compositionally diverse landscape that reshaped widely held views of Mars. More recent spacecraft including Mars Global Surveyor, Mars Odyssey, Mars Express, Mars Reconnaissance Orbiter, and the Mars Exploration Rovers have further refined, enhanced,

Early spacecraft missions to Mars, including the Marnier and Viking orbiters and landers revealed a morphologically and compositionally diverse landscape that reshaped widely held views of Mars. More recent spacecraft including Mars Global Surveyor, Mars Odyssey, Mars Express, Mars Reconnaissance Orbiter, and the Mars Exploration Rovers have further refined, enhanced, and diversified our understanding of Mars. In this dissertation, I take a multiple-path approach to planetary and Mars science including data analysis and instrument development. First, I present several tools necessary to effectively use new, complex datasets by highlighting unique and innovative data processing techniques that allow for the regional to global scale comparison of multiple datasets. Second, I present three studies that characterize several processes on early Mars, where I identify a regional, compositionally distinct, in situ, stratigraphically significant layer in Ganges and Eos Chasmata that formed early in martian history. This layer represents a unique period in martian history where primitive mantle materials were emplaced over large sections of the martian surface. While I originally characterized this layer as an effusive lava flow, based on the newly identified regional or global extent of this layer, I find the only likely scenario for its emplacement is the ejecta deposit of the Borealis Basin forming impact event. I also re-examine high thermal inertia, flat-floored craters identified in Viking data and conclude they are typically more mafic than the surrounding plains and were likely infilled by primitive volcanic materials during, or shortly after the Late Heavy Bombardment. Furthermore, the only plausible source for these magmas is directly related to the impact process, where mantle decompression melting occurs as result of the removal of overlying material by the impactor. Finally, I developed a new laboratory microscopic emission and reflectance spectrometer designed to help improve the interpretation of current remote sensing or in situ data from planetary bodies. I present the design, implementation, calibration, system performance, and preliminary results of this instrument. This instrument is a strong candidate for the next generation in situ rover instruments designed to definitively assess sample mineralogy and petrology while preserving geologic context.
ContributorsEdwards, Christopher (Author) / Christensen, Philip R. (Thesis advisor) / Bell, James (Committee member) / Sharp, Thomas (Committee member) / Clarke, Amanda B (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2012
151140-Thumbnail Image.png
Description
Molybdenum and uranium isotope variations are potentially powerful tools for reconstructing the paleoredox history of seawater. Reliable application and interpretation of these proxies requires not only detailed knowledge about the fractionation factors that control the distribution of molybdenum and uranium isotopes in the marine system, but also a thorough understanding

Molybdenum and uranium isotope variations are potentially powerful tools for reconstructing the paleoredox history of seawater. Reliable application and interpretation of these proxies requires not only detailed knowledge about the fractionation factors that control the distribution of molybdenum and uranium isotopes in the marine system, but also a thorough understanding of the diagenetic processes that may affect molybdenum and uranium isotopes entering the rock record. Using samples from the Black Sea water column, the first water column profile of 238U/235U variations from a modern euxinic basin has been measured. This profile allows the direct determination of the 238U/235U fractionation factor in a euxinic marine setting. More importantly however, these data demonstrate the extent of Rayleigh fractionation of U isotopes that can occur in euxinic restricted basins. Because of this effect, the offset of 238U/235U between global average seawater and coeval black shales deposited in restricted basins is expected to depend on the degree of local uranium drawdown from the water column, potentially complicating the interpretation 238U/235U paleorecords. As an alternative to the black shales typically used for paleoredox reconstructions, molybdenum and uranium isotope variations in bulk carbonate sediments from the Bahamas are examined. The focus of this work was to determine what processes, if any, fractionate molybdenum and uranium isotopes during incorporation into bulk carbonate sediments and their subsequent diagenesis. The results demonstrate that authigenic accumulation of molybdenum and uranium from anoxic and sulfidic pore waters is a dominant process controlling the concentration and isotopic composition of these sediments during early diagenesis. Examination of ODP drill core samples from the Bahamas reveals similar behavior for sediments during the first ~780ka of burial, but provides important examples where isolated cores and samples occasionally demonstrate additional fractionation, the cause of which remains poorly understood.
ContributorsRomaniello, Stephen J. (Author) / Anbar, Ariel (Thesis advisor) / Hartnett, Hilairy (Committee member) / Herrmann, Achim (Committee member) / Shock, Everett (Committee member) / Wadhwa, Meenakshi (Committee member) / Arizona State University (Publisher)
Created2012
136474-Thumbnail Image.png
Description
As the prevalence of childhood obesity in the United States rises, opportunities for children to be physically active become more vital. One opportunity for physical activity involves children walking to and from school. However, children that live in areas with a pedestrian-unfriendly built environment and a low degree of walkability

As the prevalence of childhood obesity in the United States rises, opportunities for children to be physically active become more vital. One opportunity for physical activity involves children walking to and from school. However, children that live in areas with a pedestrian-unfriendly built environment and a low degree of walkability are less likely to be physically active and more likely to be overweight. The purpose of this study was to study walking routes from schools in low-income neighborhoods in Southwestern United States to a local community center. Walking routes from the three study schools (South Mountain High School, Percy Julian Middle School, and Rose Linda Elementary School) were determined by distance, popularity, and the presence of a major thoroughfare. Segments and intersections, which formed the routes, were randomly selected from each school's buffer region. The walking routes as a whole, along with the segments and intersections, were audited and scored using built environment assessments tools: MAPS, PEQI and Walkability Checklist. These scores were utilized to develop interactive mapping tools to visualize the quality of the routes, segments and intersections and identify areas for improvement. Results showed that the routes from Percy Julian to the Kroc Center were, overall, rated higher than routes from the other two schools. The highest scoring route, from the seven routes studied, was route 2 from Percy Julian to the Kroc Center along Broadway Road. South Mountain High School was overall the worst starting point for walking to the Kroc Center as those three walking routes were graded as the least walkable. Possible areas for improvement include installing traffic calming features along major thoroughfares and reducing the perceived risk to pedestrian safety by beautifying the community by planting greenery. Future directions include studying the built environment in South Phoenix communities that surround the Kroc Center.
ContributorsZeien, Justin Lee (Author) / Buman, Matthew (Thesis director) / Hekler, Eric (Committee member) / Fellows, Brian (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
135691-Thumbnail Image.png
Description
Previous research has found improvements in motor and cognitive measures following Assisted Cycle Therapy (AC) in adolescence with Down syndrome (DS). Our study investigated whether we would find improvements in older adults with DS on measures of leisure physical activity (GLTEQ) and sleep, which are early indicators of Alzheimer's disease

Previous research has found improvements in motor and cognitive measures following Assisted Cycle Therapy (AC) in adolescence with Down syndrome (DS). Our study investigated whether we would find improvements in older adults with DS on measures of leisure physical activity (GLTEQ) and sleep, which are early indicators of Alzheimer's disease (AD) in persons with Down syndrome. This study consisted of eight participants with Down syndrome between 31 and 51 years old that cycled for 30 minutes 3 x/week for eight weeks either at their voluntary cycling rate (VC) or approximately 35% faster with the help of a mechanical motor (AC). We predicted that, based on pilot data (Gomez, 2015), GLTEQ would either maintain or improve after AC, but would decrease after VC and would stay the same after NC. We predicted that the sleep score may improve after both VC or AC or it may improve more after VC than AC based on pilot data related to leisure activity. Our results were consistent with our prediction that GLTEQ will either maintain or improve after AC but will decrease after VC. Our results were not consistent with our prediction that sleep may improve after both VC or AC or it may improve more after VC than AC, possibly because we did not pre-screen for sleep disorders. Future research should focus on recruiting more participants and using both objective and subjective measures of sleep and physical activity to improve the efficacy of the study.
ContributorsParker, Lucas Maury (Author) / Ringenbach, Shannon (Thesis director) / Buman, Matthew (Committee member) / Holzapfel, Simon (Committee member) / School of Social and Behavioral Sciences (Contributor) / School of Nutrition and Health Promotion (Contributor) / College of Public Service and Community Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136820-Thumbnail Image.png
Description
Translating research has been a goal of the Department of Health and Human Services since 1999. Through two years of iteration and interview with our community members, we have collected insights into the barriers to accomplishing this goal. Liberating Science is a think-tank of researchers and scientists who seek to

Translating research has been a goal of the Department of Health and Human Services since 1999. Through two years of iteration and interview with our community members, we have collected insights into the barriers to accomplishing this goal. Liberating Science is a think-tank of researchers and scientists who seek to create a more transparent process to accelerate innovation starting with behavioral health research.
ContributorsRaghani, Pooja Sioux (Author) / Hekler, Eric (Thesis director) / Buman, Matthew (Committee member) / Pruthi, Virgilia Kaur (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Biomedical Informatics Program (Contributor)
Created2014-05
137043-Thumbnail Image.png
Description
Over the last decade, the ability to track daily activity through step counting devices has undergone major changes. Advanced technologies have brought about new step counting devices and new form factors. The validity of these new devices is not fully known. The purpose of this study was to

Over the last decade, the ability to track daily activity through step counting devices has undergone major changes. Advanced technologies have brought about new step counting devices and new form factors. The validity of these new devices is not fully known. The purpose of this study was to validate and compare the step counting accuracy of commercially available hip- and wrist-worn accelerometers. A total of 185 participants (18-64 years of age) were analyzed for this study, with the sample composed nearly evenly of each gender (53.5% female) and BMI classification (33% overweight, 31.9% obese). Each participant wore five devices including hip-worn Omron HJ-112 and Fitbit One, and wrist-worn Fitbit Flex, Nike Fuelband, and Jawbone UP. A range of activities (some constant among all participants, some randomly assigned) were then used to accumulate steps including walking on a hard surface for 400m, treadmill walking/running at 2mph, 3mph, and ≥5mph, walking up five flights of stairs, and walking down five flights of stairs. To validate the accuracy of each device, steps were also counted by direct observation. Results showed high concordance with directly observed steps for all devices (intraclass correlation coefficient range: 0.86 to 0.99), with hip-worn devices more accurate than wrist-worn devices. Absolute percent error values were lower among hip-worn devices and at faster walking/running speeds. Nike Fuelband consistently was the worst performing of all test devices. These results are important because as pedometers become more complex, it is important that they remain accurate throughout a variety of activities. Future directions for this research are to explore the validity of these devices in free-living settings and among younger and older populations.
ContributorsKramer, Cody Lee (Author) / Buman, Matthew (Thesis director) / Hoffner, Kristin (Committee member) / Marshall, Simon (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2014-05