Matching Items (79)
158656-Thumbnail Image.png
Description
Transition metal di- and tri-halides (TMH) have recently gathered research attention owing to their intrinsic magnetism all the way down to their two-dimensional limit. 2D magnets, despite being a crucial component for realizing van der Waals heterostructures and devices with various functionalities, were not experimentally proven until very recently in

Transition metal di- and tri-halides (TMH) have recently gathered research attention owing to their intrinsic magnetism all the way down to their two-dimensional limit. 2D magnets, despite being a crucial component for realizing van der Waals heterostructures and devices with various functionalities, were not experimentally proven until very recently in 2017. The findings opened up enormous possibilities for studying new quantum states of matter that can enable potential to design spintronic, magnetic memory, data storage, sensing, and topological devices. However, practical applications in modern technologies demand materials with various physical and chemical properties such as electronic, optical, structural, catalytic, magnetic etc., which cannot be found within single material systems. Considering that compositional modifications in 2D systems lead to significant changes in properties due to the high anisotropy inherent to their crystallographic structure, this work focuses on alloying of TMH compounds to explore the potentials for tuning their properties. In this thesis, the ternary cation alloys of Co(1-x)Ni(x)Cl(2) and Mo(1-x)Cr(x)Cl(3) were synthesized via chemical vapor transport at a various stoichiometry. Their compositional, structural, and magnetic properties were studied using Energy Dispersive Spectroscopy, Raman Spectroscopy, X-Ray Diffraction, and Vibrating Sample Magnetometry. It was found that completely miscible ternary alloys of Co(1-x)Ni(x)Cl(2) show an increasing Néel temperature with nickel concentration. The Mo(1-x)Cr(x)Cl(3) alloy shows potential magnetic phase changes induced by the incorporation of molybdenum species within the host CrCl3 lattice. Magnetic measurements give insight into potential antiferromagnetic to ferromagnetic transition with molybdenum incorporation, accompanied by a shift in the magnetic easy-axis from parallel to perpendicular. Phase separation was found in the Fe(1-x)Cr(x)Cl(3) ternary alloy indicating that crystallographic structure compatibility plays an essential role in determining the miscibility of two parent compounds. Alloying across two similar (TMH) compounds appears to yield predictable results in properties as in the case of Co(1-x)Ni(x)Cl(2), while more exotic transitions, as in the case of Mo(1-x)Cr(x)Cl(3), can emerge by alloying dissimilar compounds. When dissimilarity reaches a certain limit, as with Fe(1-x)Cr(x)Cl(3), phase separation becomes more favorable. Future studies focusing on magnetic and structural phase transitions will reveal more insight into the effect of alloying in these TMH systems.
ContributorsKolari, Pranvera (Author) / Tongay, Sefaattin (Thesis advisor) / Jiao, Yang (Committee member) / Muhich, Christopher (Committee member) / Arizona State University (Publisher)
Created2020
158173-Thumbnail Image.png
Description
Satisfying the ever-increasing demand for electricity while maintaining sustainability and eco-friendliness has become a key challenge for humanity. Around 70% of energy is rejected as heat from different sectors. Thermoelectric energy harvesting has immense potential to convert this heat into electricity in an environmentally friendly manner. However, low efficiency and

Satisfying the ever-increasing demand for electricity while maintaining sustainability and eco-friendliness has become a key challenge for humanity. Around 70% of energy is rejected as heat from different sectors. Thermoelectric energy harvesting has immense potential to convert this heat into electricity in an environmentally friendly manner. However, low efficiency and high manufacturing costs inhibit the widespread application of thermoelectric devices. In this work, an inexpensive solution processing technique and a nanostructuring approach are utilized to create thermoelectric materials. Specifically, the solution-state and solid-state structure of a lead selenide (PbSe) precursor is characterized by different spectroscopic techniques. This precursor has shown promise for preparing thermoelectric lead selenide telluride (PbSexTe1-x) thin films. The precursor was prepared by reacting lead and diphenyl diselenide in different solvents. The characterization reveals the formation of a solvated lead(II) phenylselenolate complex which deepens the understanding of the formation of these precursors. Further, using slightly different chemistry, a low-temperature tin(II) selenide (SnSe) precursor was synthesized and identified as tin(IV) methylselenolate. The low transformation temperature makes it compatible with colloidal PbSe nanocrystals. The colloidal PbSe nanocrystals were chemically treated with a SnSe precursor and subjected to mild annealing to form conductive nanocomposites. Finally, the room temperature thermoelectric characterization of solution-processed PbSexTe1-x thin films is presented. This is followed by a setup development for temperature-dependent measurements and preliminary temperature-dependent measurements on PbSexTe1-x thin films.
ContributorsVartak, Prathamesh Bhalchandra (Author) / Wang, Robert Y. (Thesis advisor) / Wang, Liping (Committee member) / Trovitch, Ryan J. (Committee member) / Tongay, Sefaattin (Committee member) / Goodnick, Stephen M. (Committee member) / Arizona State University (Publisher)
Created2020
157927-Thumbnail Image.png
Description
Two-dimensional quantum materials have garnered increasing interest in a wide

variety of applications due to their promising optical and electronic properties. These

quantum materials are highly anticipated to make transformative quantum sensors and

biosensors. Biosensors are currently considered among one of the most promising

solutions to a wide variety of biomedical and environmental problems

Two-dimensional quantum materials have garnered increasing interest in a wide

variety of applications due to their promising optical and electronic properties. These

quantum materials are highly anticipated to make transformative quantum sensors and

biosensors. Biosensors are currently considered among one of the most promising

solutions to a wide variety of biomedical and environmental problems including highly

sensitive and selective detection of difficult pathogens, toxins, and biomolecules.

However, scientists face enormous challenges in achieving these goals with current

technologies. Quantum biosensors can have detection with extraordinary sensitivity and

selectivity through manipulation of their quantum states, offering extraordinary properties

that cannot be attained with traditional materials. These quantum materials are anticipated

to make significant impact in the detection, diagnosis, and treatment of many diseases.

Despite the exciting promise of these cutting-edge technologies, it is largely

unknown what the inherent toxicity and biocompatibility of two-dimensional (2D)

materials are. Studies are greatly needed to lay the foundation for understanding the

interactions between quantum materials and biosystems. This work introduces a new

method to continuously monitor the cell proliferation and toxicity behavior of 2D

materials. The cell viability and toxicity measurements coupled with Live/Dead

fluorescence imaging suggest the biocompatibility of crystalline MoS2 and MoSSe

monolayers and the significantly-reduced cellular growth of defected MoTe2 thin films

and exfoliated MoS2 nanosheets. Results show the exciting potential of incorporating

kinetic cell viability data of 2D materials with other assay tools to further fundamental

understanding of 2D material biocompatibility.
ContributorsTran, Michael, Ph.D (Author) / Tongay, Sefaattin (Thesis advisor) / Green, Matthew (Thesis advisor) / Muhich, Christopher (Committee member) / Arizona State University (Publisher)
Created2019
157671-Thumbnail Image.png
Description
More recently there have been a tremendous advancement in theoretical studies showing remarkable properties that could be exploited from transition metal dichalcogenide (TMDC) Janus crystals through various applications. These Janus crystals are having a proven intrinsic electrical field due to breaking of out-of-plane inversion symmetry in a conventional TMDC when

More recently there have been a tremendous advancement in theoretical studies showing remarkable properties that could be exploited from transition metal dichalcogenide (TMDC) Janus crystals through various applications. These Janus crystals are having a proven intrinsic electrical field due to breaking of out-of-plane inversion symmetry in a conventional TMDC when one of the chalcogenides atomic layer is being completely replaced by a layer of different chalcogen element. However, due to lack of accurate processing control at nanometer scales, key for creating a highly crystalline Janus structure has not yet been familiarized. Thus, experimental characterization and implication of these Janus crystals are still in a state of stagnation. This work presents a new advanced methodology that could prove to be highly efficient and effective for selective replacement of top layer atomic sites at room temperature conditions.

This is specifically more focused on proving an easy repeatability for replacement of top atomic layer chalcogenide from a parent structure of already grown TMDC monolayer (via CVD) by a post plasma processing technique. Though this developed technique is not limited to only chalcogen atom replacement but can be extended to any type of surface functionalization requirements.

Basic characterization has been performed on the Janus crystal of SeMoS and SeWS where, creation and characterization of SeWS has been done for the very first time, evidencing a repeatable nature of the developed methodology.
ContributorsTrivedi, Dipesh (Author) / Tongay, Sefaattin (Thesis advisor) / Green, Matthew (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2019
157733-Thumbnail Image.png
Description
A Fundamental study of bulk, layered, and monolayers bromide lead perovskites structural, optical, and electrical properties have been studied as thickness changes. X-Ray Diffraction (XRD) and Raman spectroscopy measures the structural parameter showing how the difference in the thicknesses changes the crystal structures through observing changes in average lattice constant,

A Fundamental study of bulk, layered, and monolayers bromide lead perovskites structural, optical, and electrical properties have been studied as thickness changes. X-Ray Diffraction (XRD) and Raman spectroscopy measures the structural parameter showing how the difference in the thicknesses changes the crystal structures through observing changes in average lattice constant, atomic spacing, and lattice vibrations.

Optical and electrical properties have also been studied mainly focusing on the thickness effect on different properties where the Photoluminescence (PL) and exciton binding energies show energy shift as thickness of the material changes. Temperature dependent PL has shown different characteristics when comparing methylammonium lead bromide (MAPbBr3) to butylammonium lead bromide (BA2PbBr4) and comparing the two layered n=1 materials butylammonium lead bromide (BA2PbBr4) to butylammonium lead iodide (BA2PbI4). Time-resolved spectroscopy displays different lifetimes as thickness of bromide-based perovskite changes. Finally, thickness dependence (starting from monolayers) Kelvin Probe Force Microscopy (KPFM) of the layered materials BA2PbBr4, Butylammonium(methylammonium)lead bromide (BA2MAPb2Br7), and molybdenum sulfide (MoS2) were studied showing an exponential relation between the thickness of the materials and their surface potentials.
ContributorsAlenezi, Omar (Author) / Tongay, Sefaattin (Thesis advisor) / King, Richard (Thesis advisor) / Yao, Yu (Committee member) / Arizona State University (Publisher)
Created2019
158547-Thumbnail Image.png
Description
Vibrational spectroscopy is a ubiquitous characterization tool in elucidating atomic structure at the bulk and nanoscale. The ability to perform high spatial resolution vibrational spectroscopy in a scanning transmission electron microscope (STEM) with electron energy-loss spectroscopy (EELS) has the potential to affect a variety of materials science problems. Since 2014,

Vibrational spectroscopy is a ubiquitous characterization tool in elucidating atomic structure at the bulk and nanoscale. The ability to perform high spatial resolution vibrational spectroscopy in a scanning transmission electron microscope (STEM) with electron energy-loss spectroscopy (EELS) has the potential to affect a variety of materials science problems. Since 2014, instrumentation development has pushed for incremental improvements in energy resolution, with the current best being 4.2 meV. Although this is poor in comparison to what is common in photon or neutron vibrational spectroscopies, the spatial resolution offered by vibrational EELS is equal to or better than the best of these other techniques.

The major objective of this research program is to investigate the spatial resolution of the monochromated energy-loss signal in the transmission-beam mode and correlate it to the excitation mechanism of the associated vibrational mode. The spatial variation of dipole vibrational signals in SiO2 is investigated as the electron probe is scanned across an atomically abrupt SiO2/Si interface. The Si-O bond stretch signal has a spatial resolution of 2 – 20 nm, depending on whether the interface, bulk, or surface contribution is chosen. For typical TEM specimen thicknesses, coupled surface modes contribute strongly to the spectrum. These coupled surface modes are phonon polaritons, whose intensity and spectral positions are strongly specimen geometry dependent. In a SiO2 thin-film patterned with a 2x2 array, dielectric theory simulations predict the simultaneous excitation of parallel and uncoupled surface polaritons and a very weak excitation of the orthogonal polariton.

It is demonstrated that atomic resolution can be achieved with impact vibrational signals from optical and acoustic phonons in a covalently bonded material like Si. Sub-nanometer resolution mapping of the Si-O symmetric bond stretch impact signal can also be performed in an ionic material like SiO2. The visibility of impact energy-loss signals from excitation of Brillouin zone boundary vibrational modes in hexagonal BN is seen to be a strong function of probe convergence, but not as strong a function of spectrometer collection angles. Some preliminary measurements to detect adsorbates on catalyst nanoparticle surfaces with minimum radiation damage in the aloof-beam mode are also presented.
ContributorsVenkatraman, Kartik (Author) / Crozier, Peter (Thesis advisor) / Rez, Peter (Committee member) / Wang, Robert (Committee member) / Tongay, Sefaattin (Committee member) / Arizona State University (Publisher)
Created2020
158253-Thumbnail Image.png
Description
Two dimensional (2D) Janus Transition Metal Dichalcogenides (TMDs) are a new class of atomically thin polar materials. In these materials, the top and the bottom atomic layer are made of different chalcogen atoms. To date, several theoretical studies have shown that a broken mirror symmetry induces a colossal electrical field

Two dimensional (2D) Janus Transition Metal Dichalcogenides (TMDs) are a new class of atomically thin polar materials. In these materials, the top and the bottom atomic layer are made of different chalcogen atoms. To date, several theoretical studies have shown that a broken mirror symmetry induces a colossal electrical field in these materials, which leads to unusual quantum properties. Despite these new properties, the current knowledge in their synthesis is limited only through two independent studies; both works rely on high-temperature processing techniques and are specific to only one type of 2D Janus material - MoSSe. Therefore, there is an urgent need for the development of a new synthesis method to (1) Extend the library of Janus class materials. (2) Improve the quality of 2D crystals. (3) Enable the synthesis of Janus heterostructures. The central hypothesis in this work is that the processing temperature of 2D Janus synthesis can be significantly lowered down to room temperatures by using reactive hydrogen and sulfur radicals while stripping off selenium atoms from the 2D surface. To test this hypothesis, a series of controlled growth studies were performed, and several complementary characterization techniques were used to establish a process–structure-property relationship. The results show that the newly proposed approach, namely Selective Epitaxy and Atomic Replacement (SEAR), is effective in reducing the growth temperature down to ambient conditions. The proposed technique benefits in achieving highly crystalline 2D Janus layers with an excellent optical response. Further studies herein show that this technique can form highly sophisticated lateral and vertical heterostructures of 2D Janus layers. Overall results establish an entirely new growth technique for 2D Janus.layers, which pave ways for the realization of exciting quantum effects in these materials such as Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state, Majorana fermions, and topological p-wave superconductors.
ContributorsSayyad, Mohammed Yasir (Author) / Tongay, Sefaattin (Thesis advisor) / Crozier, Peter (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2020
161641-Thumbnail Image.png
Description
Realization of efficient, high-bandgap photovoltaic cells produced using economically viable methods is a technological advance that could change the way we generate and use energy, and thereby accelerate the development of human civilization. There is a need to engineer a semiconductor material for solar cells, particularly multijunction cells, that has

Realization of efficient, high-bandgap photovoltaic cells produced using economically viable methods is a technological advance that could change the way we generate and use energy, and thereby accelerate the development of human civilization. There is a need to engineer a semiconductor material for solar cells, particularly multijunction cells, that has high (1.6-2.0 eV) bandgap, has relatively inactive defects, is thermodynamically stable under normal operating conditions with the potential for cost-effective thin-film growth in mass production.This work focuses on a material system made of gallium, indium, and phosphorus – the ternary semiconductor GaInP. GaInP based photovoltaic cells in single-crystal form have demonstrated excellent power conversion efficiency, however, growth of single-crystal GaInP is prohibitively expensive. While growth of polycrystalline GaInP is expected to lower production costs, polycrystalline GaInP is also expected to have a high density of electronically active defects, about which little is reported in scientific literature. This work presents the first study of synthesis, and structural and optoelectronic characterization of polycrystalline GaInP thin films. In addition, this work models the best performance of polycrystalline solar cells achievable with a given grain size with grain-boundary/surface recombination velocity as a variable parameter. The effects of defect characteristics at the surface and layer properties such as doping and thickness on interface recombination velocity are also modeled. Recombination velocities at the free surface of single-crystal GaInP and after deposition of various dielectric layers on GaInP are determined experimentally using time-resolved photoluminescence decay measurements. In addition, experimental values of bulk lifetime and surface recombination velocity in well-passivated single crystal AlInP-GaInP based double heterostructures are also measured for comparison to polycrystalline material systems. A novel passivation method – aluminum-assisted post-deposition treatment or Al-PDT – was developed which shows promise as a general passivation and material improvement technique for polycrystalline thin films. In the GaInP system, this aluminum post-deposition treatment has demonstrated improvement in the minority carrier lifetime to 44 ns at 80 K. During development of the passivation process, aluminum diffusivity in GaInP was measured using TEM-EDS line scans. Introduction, development, and refinement of this novel passivation mechanism in polycrystalline GaInP could initiate the development of a new family of passivation treatments, potentially improving the optoelectronic response of other polycrystalline compound semiconductors as well.
ContributorsChikhalkar, Abhinav (Author) / King, Richard R (Thesis advisor) / Honsberg, Christiana (Committee member) / Newman, Nathan (Committee member) / Tongay, Sefaattin (Committee member) / Arizona State University (Publisher)
Created2021
161840-Thumbnail Image.png
Description
Soft thermal interface materials (TIMs) are critical for improving the thermal management of advanced microelectronic devices. Despite containing high thermal conductivity filler materials, TIM performance is limited by thermal resistances between fillers, filler-matrix, and external contact resistance. Recently, room-temperature liquid metals (LMs) started to be adapted as an alternative TIM

Soft thermal interface materials (TIMs) are critical for improving the thermal management of advanced microelectronic devices. Despite containing high thermal conductivity filler materials, TIM performance is limited by thermal resistances between fillers, filler-matrix, and external contact resistance. Recently, room-temperature liquid metals (LMs) started to be adapted as an alternative TIM for their low thermal resistance and fluidic nature. However, LM-based TIMs face challenges due to their low viscosity, non-wetting qualities, chemical reactivity, and corrosiveness towards aluminum.To address these concerns, this dissertation research investigates fundamental LM properties and assesses their utility for developing multiphase LM composites with strong thermal properties. Augmentation of LM with gallium oxide and air capsules lead to LM-base foams with improved spreading and patterning. Gallium oxides are responsible for stabilizing LM foam structures which is observed through electron microscopy, revealing a temporal evolution of air voids after shear mixing in air. The presence of air bubbles and oxide fragments in LM decreases thermal conductivity while increasing its viscosity as the shear mixing time is prolonged. An overall mechanism for foam generation in LM is presented in two stages: 1) oxide fragment accumulation and 2) air bubble entrapment and propagation. To avoid the low thermal conductivity air content, mixing of non-reactive particles of tungsten or silicon carbide (SiC) into LM forms paste-like LM-based mixtures that exhibit tunable high thermal conductivity 2-3 times beyond the matrix material. These filler materials remain chemically stable and do not react with LM over time while suspended. Gallium oxide-mediated wetting mechanisms for these non-wetting fillers are elucidated in oxygen rich and deficient environments. Three-phase composites consisting of LM and Ag-coated SiC fillers dispersed in a noncuring silicone oil matrix address LM-corrosion related issues. Ag-coated SiC particles enable improved wetting of the LM, and the results show that applied pressure is necessary for bridging of these LM-coated particles to improve filler thermal resistance. Compositional tuning between the fillers leads to thermal improvements in this multiphase composite. The results of this dissertation work aim to advance our current understanding of LMs and how to design LM-based composite materials for improved TIMs and other soft thermal applications.
ContributorsKong, Wilson (Author) / Wang, Robert Y (Thesis advisor) / Rykaczewski, Konrad (Thesis advisor) / Green, Matthew D (Committee member) / Tongay, Sefaattin (Committee member) / Arizona State University (Publisher)
Created2021
161698-Thumbnail Image.png
Description
2D materials with reduced symmetry have gained great interest in the past decade due to the arising quantum properties introduced by the structural asymmetry. A particular example is called 2D Janus materials. Named after Roman god Janus with two faces, Janus materials have different chemical compositions on the two sides

2D materials with reduced symmetry have gained great interest in the past decade due to the arising quantum properties introduced by the structural asymmetry. A particular example is called 2D Janus materials. Named after Roman god Janus with two faces, Janus materials have different chemical compositions on the two sides of materials, leading to a structure with broken mirror symmetry. Electronegativity difference of the facial elements induces a built-in polarization field pointing out of the plane, which has driven a lot of theory predictions on Rashba splitting, high- temperature ferromagnetism, Skyrmion formation, and so on. Previously reported experimental synthesis of Janus 2D materials relies on high-temperature processing, which limits the crystallinity of as produced 2D layers. In this dissertation, I present a room temperature selective epitaxial atomic re- placement (SEAR) method to convert CVD-grown transition metal dichalcogenides (TMDs) into a Janus structure. Chemically reactive H2 plasma is used to selectively etch off the top layer of chalcogen atoms and the introduction of replacement chalco- gen source in-situ allows for the achievement of Janus structures in one step at room temperature. It is confirmed that the produced Janus monolayers possess high crys- tallinity and good excitonic properties. Moving forward, I show the fabrication of lateral and vertical heterostructures of Janus materials, which are predicted to show exotic properties because of the intrinsic polarization field. To efficiently screen other kinds of interesting Janus structures, a new plasma chamber is designed to allow in-situ optical measurement on the target monolayer during the SEAR process. Successful conversion is seen on mechanically exfoliated MoSe2 and WSe2, and insights into reaction kinetics are gain from Raman spectra evolution. Using the monitoring ability, Janus SNbSe is synthesized for the first time. It’s also demonstrated that the overall crystallinity of as produced Janus monolayer SWSe and SMoSe are correlated with the source of monolayer TMDs. Overall, the synthesis of the Janus monolayers using the described method paves the way to the production of highly crystalline Janus materials, and with the in-situ monitoring ability, a deeper understanding of the mechanism is reached. This will accelerate future exploration of other Janus materials synthesis, and confirmation and discovery of their exciting quantum properties.
ContributorsQin, Ying (Author) / Tongay, Sefaattin (Thesis advisor) / Zhuang, Houlong (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2021