Matching Items (65)
152348-Thumbnail Image.png
Description
Pathogenic Gram-negative bacteria employ a variety of molecular mechanisms to combat host defenses. Two-component regulatory systems (TCR systems) are the most ubiquitous signal transduction systems which regulate many genes required for virulence and survival of bacteria. In this study, I analyzed different TCR systems in two clinically-relevant Gram-negative bacteria, i.e.,

Pathogenic Gram-negative bacteria employ a variety of molecular mechanisms to combat host defenses. Two-component regulatory systems (TCR systems) are the most ubiquitous signal transduction systems which regulate many genes required for virulence and survival of bacteria. In this study, I analyzed different TCR systems in two clinically-relevant Gram-negative bacteria, i.e., oral pathogen Porphyromonas gingivalis and enterobacterial Escherichia coli. P. gingivalis is a major causative agent of periodontal disease as well as systemic illnesses, like cardiovascular disease. A microarray study found that the putative PorY-PorX TCR system controls the secretion and maturation of virulence factors, as well as loci involved in the PorSS secretion system, which secretes proteinases, i.e., gingipains, responsible for periodontal disease. Proteomic analysis (SILAC) was used to improve the microarray data, reverse-transcription PCR to verify the proteomic data, and primer extension assay to determine the promoter regions of specific PorX regulated loci. I was able to characterize multiple genetic loci regulated by this TCR system, many of which play an essential role in hemagglutination and host-cell adhesion, and likely contribute to virulence in this bacterium. Enteric Gram-negative bacteria must withstand many host defenses such as digestive enzymes, low pH, and antimicrobial peptides (AMPs). The CpxR-CpxA TCR system of E. coli has been extensively characterized and shown to be required for protection against AMPs. Most recently, this TCR system has been shown to up-regulate the rfe-rff operon which encodes genes involved in the production of enterobacterial common antigen (ECA), and confers protection against a variety of AMPs. In this study, I utilized primer extension and DNase I footprinting to determine how CpxR regulates the ECA operon. My findings suggest that CpxR modulates transcription by directly binding to the rfe promoter. Multiple genetic and biochemical approaches were used to demonstrate that specific TCR systems contribute to regulation of virulence factors and resistance to host defenses in P. gingivalis and E. coli, respectively. Understanding these genetic circuits provides insight into strategies for pathogenesis and resistance to host defenses in Gram negative bacterial pathogens. Finally, these data provide compelling potential molecular targets for therapeutics to treat P. gingivalis and E. coli infections.
ContributorsLeonetti, Cori (Author) / Shi, Yixin (Thesis advisor) / Stout, Valerie (Committee member) / Nickerson, Cheryl (Committee member) / Sandrin, Todd (Committee member) / Arizona State University (Publisher)
Created2013
135647-Thumbnail Image.png
Description
Clean water for drinking, food preparation, and bathing is essential for astronaut health and safety during long duration habitation of the International Space Station (ISS), including future missions to Mars. Despite stringent water treatment and recycling efforts on the ISS, it is impossible to completely prevent microbial contamination of onboard

Clean water for drinking, food preparation, and bathing is essential for astronaut health and safety during long duration habitation of the International Space Station (ISS), including future missions to Mars. Despite stringent water treatment and recycling efforts on the ISS, it is impossible to completely prevent microbial contamination of onboard water supplies. In this work, we used a spaceflight analogue culture system to better understand how the microgravity environment can influence the pathogenesis-related characteristics of Burkholderia cepacia complex (Bcc), an opportunistic pathogen previously recovered from the ISS water system. The results of the present study suggest that there may be important differences in how this pathogen can respond and adapt to spaceflight and other low fluid shear environments encountered during their natural life cycles. Future studies are aimed at understanding the underlying mechanisms responsible for these phenotypes.
ContributorsKang, Bianca Younseon (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, Mark (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137404-Thumbnail Image.png
Description
The diagnosis of irritable bowel syndrome (IBS) is currently based on symptomatic criteria that exclude other conditions affecting the gastrointestinal tract, such as celiac disease, food allergies, and infections. The absence of appropriate diagnostic and therapeutic approaches for IBS places a significant burden on the patient and the health care

The diagnosis of irritable bowel syndrome (IBS) is currently based on symptomatic criteria that exclude other conditions affecting the gastrointestinal tract, such as celiac disease, food allergies, and infections. The absence of appropriate diagnostic and therapeutic approaches for IBS places a significant burden on the patient and the health care system due to direct and indirect costs of care. Limitations associated with the application of symptomatic criteria include inappropriate use and/or intrinsic limitations such as the population to which these criteria are applied. The lack of biomarkers specific for IBS, non-specific abdominal symptoms, and considerable variability in the disease course creates additional uncertainty during diagnosis. This project involved screening tissue samples from patients with verified IBS to identify gene expression-based biomarkers associated with IBS. Through validation of microarray gene chip data on the tissue samples using PCR, it was determined that a number of genes within the diseased IBS patient tissue samples were differentially expressed in comparison to the healthy subjects. These findings could potentially lead to the diagnosis of IBS on the basis of a genetic "fingerprint".
ContributorsHockley, Maryam (Author) / Jurutka, Peter (Thesis director) / Sandrin, Todd (Committee member) / Zhang, Lin (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2013-12
141473-Thumbnail Image.png
Description

Critical flicker fusion thresholds (CFFTs) describe when quick amplitude modulations of a light source become undetectable as the frequency of the modulation increases and are thought to underlie a number of visual processing skills, including reading. Here, we compare the impact of two vision-training approaches, one involving contrast sensitivity training

Critical flicker fusion thresholds (CFFTs) describe when quick amplitude modulations of a light source become undetectable as the frequency of the modulation increases and are thought to underlie a number of visual processing skills, including reading. Here, we compare the impact of two vision-training approaches, one involving contrast sensitivity training and the other directional dot-motion training, compared to an active control group trained on Sudoku. The three training paradigms were compared on their effectiveness for altering CFFT. Directional dot-motion and contrast sensitivity training resulted in significant improvement in CFFT, while the Sudoku group did not yield significant improvement. This finding indicates that dot-motion and contrast sensitivity training similarly transfer to effect changes in CFFT. The results, combined with prior research linking CFFT to high-order cognitive processes such as reading ability, and studies showing positive impact of both dot-motion and contrast sensitivity training in reading, provide a possible mechanistic link of how these different training approaches impact reading abilities.

ContributorsZhou, Tianyou (Author) / Nanez, Jose (Author) / Zimmerman, Daniel (Author) / Holloway, Steven (Author) / Seitz, Aaron (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2016-10-26
141474-Thumbnail Image.png
Description

Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically developed (TD) individuals were developed to identify the abnormality of functional connections (FCs). Due to over-fitting and interferential effects of varying measurement conditions and demographic distributions, no

Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically developed (TD) individuals were developed to identify the abnormality of functional connections (FCs). Due to over-fitting and interferential effects of varying measurement conditions and demographic distributions, no classifiers have been strictly validated for independent cohorts. Here we overcome these difficulties by developing a novel machine-learning algorithm that identifies a small number of FCs that separates ASD versus TD. The classifier achieves high accuracy for a Japanese discovery cohort and demonstrates a remarkable degree of generalization for two independent validation cohorts in the USA and Japan. The developed ASD classifier does not distinguish individuals with major depressive disorder and attention-deficit hyperactivity disorder from their controls but moderately distinguishes patients with schizophrenia from their controls. The results leave open the viable possibility of exploring neuroimaging-based dimensions quantifying the multiple-disorder spectrum.

ContributorsYahata, Noriaki (Author) / Morimoto, Jun (Author) / Hashimoto, Ryuichiro (Author) / Lisi, Giuseppe (Author) / Shibata, Kazuhisa (Author) / Kawakubo, Yuki (Author) / Kuwabara, Hitoshi (Author) / Kuroda, Miho (Author) / Yamada, Takashi (Author) / Megumi, Fukuda (Author) / Imamizu, Hiroshi (Author) / Nanez, Jose (Author) / Takahashi, Hidehiko (Author) / Okamoto, Yasumasa (Author) / Kasai, Kiyoto (Author) / Kato, Nobumasa (Author) / Sasaki, Yuka (Author) / Watanabe, Takeo (Author) / Kawato, Mitsuo (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2016-04-14
131560-Thumbnail Image.png
Description
Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate

Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate that spaceflight negatively impacts aspects of the immune system. In order to ensure astronaut safety during long term missions, it is important to study the phenotypic effects of the microgravity environment on a range of medically important microbial pathogens that might be encountered by the crew. This ground-based study uses the NASA-engineered Rotating Wall Vessel (RWV) bioreactor as a spaceflight analogue culture system to grow bacteria under low fluid shear forces relative to those encountered in microgravity, and interestingly, in the intestinal tract during infection. The culture environment in the RWV is commonly referred to as low shear modeled microgravity (LSMMG). In this study, we characterized the stationary phase stress response of the enteric pathogen, Salmonella enterica serovar Enteritidis (S. Enteritidis), to LSMMG culture. We showed that LSMMG enhanced the resistance of stationary phase cultures of S. Enteritidis to acid and thermal stressors, which differed from the LSSMG stationary phase response of the closely related pathovar, S. Typhimurium. Interestingly, LSMMG increased the ability of both S. Enteritidis and S. Typhimurium to adhere to, invade into, and survive within an in vitro 3-D intestinal co-culture model containing immune cells. Our results indicate that LSMMG regulates pathogenesis-related characteristics of S. Enteritidis in ways that may present an increased health risk to astronauts during spaceflight missions.
ContributorsKoroli, Sara (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, C. Mark (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133138-Thumbnail Image.png
Description
The International Space Station (ISS) utilizes recycled water for consumption, cleaning and air humidity control. The Environmental Control and Life Support Systems (ECLSS) have been rigorously tested at the NASA Johnson Space Center. Despite the advanced engineering of the water recovery system, bacterial biofilms have been recovered from this potable

The International Space Station (ISS) utilizes recycled water for consumption, cleaning and air humidity control. The Environmental Control and Life Support Systems (ECLSS) have been rigorously tested at the NASA Johnson Space Center. Despite the advanced engineering of the water recovery system, bacterial biofilms have been recovered from this potable water source. Microbial contamination of potable water poses a potential threat to crew members onboard the ISS. Because astronauts have been found to have compromised immune systems, bacterial strains that would not typically be considered a danger must be carefully studied to better understand the mechanisms enabling their survival, including polymicrobial interactions. The need for a more thorough understanding of the effect of spaceflight environment on polymicrobial interactions and potential impact on crew health and vehicle integrity is heightened since 1) several potential pathogens have been isolated from the ISS potable water system, 2) spaceflight has been shown to induce unexpected alterations in microbial responses, and 3) emergent phenotypes are often observed when multiple bacterial species are co- cultured together, as compared to pure cultures of single species. In order to address these concerns, suitable growth media are required that will not only support the isolation of these microbes but also the ability to distinguish between them when grown as mixed cultures. In this study, selective and/or differential media were developed for bacterial isolates collected from the ISS potable water supply. In addition to facilitating discrimination between bacteria, the ideal media for each strain was intended to have a 100% recovery rate compared to traditional R2A media. Antibiotic and reagent susceptibility and resistance tests were conducted for the purpose of developing each individual medium. To study a wide range of targets, 12 antibiotics were selected from seven major classes, including penicillin, cephalosporins, fluoroquinolones, aminoglycosides, glycopeptides/lipoglycopeptides, macrolides/lincosamides/streptogramins, tetracyclines, in addition to seven unclassified antibiotics and three reagents. Once developed, medium efficacy was determined by means of growth curve experiments. The development of these media is a critical step for further research into the mechanisms utilized by these strains to survive the harsh conditions of the ISS water system. Furthermore, with an understanding of the complex nature of these polymicrobial communities, specific contamination targeting and control can be conducted to reduce the risk to crew members. Understanding these microbial species and their susceptibilities has potential application for future NASA human explorations, including those to Mars.
ContributorsKing, Olivia Grace (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, Mark (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134109-Thumbnail Image.png
Description
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that afflicts more than 20% of the population in the United States. Symptoms include mild to severe abdominal discomfort accompanied by a change in stool character and form ranging from constipation to diarrhea. Additionally, IBS is associated with secondary effects including

Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that afflicts more than 20% of the population in the United States. Symptoms include mild to severe abdominal discomfort accompanied by a change in stool character and form ranging from constipation to diarrhea. Additionally, IBS is associated with secondary effects including depression, anxiety, poor quality of life, insomnia and sexual dysfunction. Despite the known association of secondary effects, patients are often tested for potential illnesses that share similar pathological symptoms. This process can be costly and protracted and yet not deliver a completely accurate diagnosis. The aim of this research is to identify gene expression-based biological signatures and unique biomarkers for the detection of IBS. Through the use of quantitative polymerase chain reaction (qPCR), comparison of pooled samples of non-IBS patient-derived RNA were used to identify differentially expressed genes in patients with IBS. Data obtained from preliminary DNA microarray analysis demonstrated a degree of success in differentiating between IBS and asymptomatic patients. Additional comprehensive DNA microarray analyses have led to the identification of a series of 858 differentially expressed genes, including genes associated with serotonin metabolism, which may characterize the IBS pathological state. The microarray results were screened using a combination of gene ontological analysis and qPCR. Real-time PCR revealed repressed levels of tryptophan hydroxylase (TPH1), an enzyme involved in the rate- limiting step in serotonin biosynthesis, in IBS patients relative to controls. Lower concentrations of serum 25(OH)D were also observed among the IBS cohort relative to asymptomatic patients, especially among IBS-D subtype. Vitamin D was shown to modulate differentially expressed genes in IBS patients, suggesting that IBS pathophysiology may involve vitamin D insufficiency and/or an irregularity in serotonin metabolism. Additional qPCR analysis of 32 differentially expressed genes in IBS patients identified 7 putative genetic biomarkers proposed for a potential IBS diagnostic panel. Based on the quality of these results, we may be able to develop, test, and market a diagnostic kit for IBS.
ContributorsGrozic, Aleksandra (Author) / Jurutka, Peter (Thesis director) / Sandrin, Todd (Committee member) / Foxx-Orenstein, Amy (Committee member) / School of Mathematical and Natural Sciences (Contributor) / School of Social and Behavioral Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135467-Thumbnail Image.png
Description
Proper developmental fidelity ensures uninterrupted progression towards sexual maturity and species longevity. However, early development, the time-frame spanning infancy through adolescence, is a fragile state since organisms have limited mobility and responsiveness towards their environment. Previous studies have shown that damage during development leads to an onset of developmental delay

Proper developmental fidelity ensures uninterrupted progression towards sexual maturity and species longevity. However, early development, the time-frame spanning infancy through adolescence, is a fragile state since organisms have limited mobility and responsiveness towards their environment. Previous studies have shown that damage during development leads to an onset of developmental delay which is proportional to the extent of damage accrued by the organism. In contrast, damage sustained in older organisms does not delay development in response to tissue damage. In the fruit fly, Drosophila melanogaster, damage to wing precursor tissues is associated with developmental retardation if damage is sustained in young larvae. No developmental delay is observed when damage is inflicted closer to pupariation time. Here we use microarray analysis to characterize the genomic response to injury in Drosophila melanogaster in young and old larvae. We also begin to develop tools to examine in more detail, the role that the neurotransmitter dopamine might play in mediating injury-induced developmental delays.
ContributorsContreras Rodriguez, Jesus (Co-author) / Lupone, Teresa (Co-author) / Beckett, Chaz (Co-author) / Almajan, Ashley (Co-author) / Leek, Ty (Co-author) / Hussain, Sabahat (Co-author) / Marsh, Tyler (Co-author) / Broatch, Jennifer (Co-author) / Hackney Price, Jennifer (Thesis director) / Sandrin, Todd (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134184-Thumbnail Image.png
Description
Historically, Supreme Court interpretations of the Constitution of the United States have been significantly important, impacting the lives of every American. This honors thesis seeks to understand the ways in which the Constitution has been interpreted through the lens of political ideology. Using constitutional theory, I explain how the political

Historically, Supreme Court interpretations of the Constitution of the United States have been significantly important, impacting the lives of every American. This honors thesis seeks to understand the ways in which the Constitution has been interpreted through the lens of political ideology. Using constitutional theory, I explain how the political ideologies of classical liberalism, conservatism, libertarianism, and progressive liberalism have played a role in the interpretations of the First, Second, and Fourth Amendments. I also examine how these ideological interpretations have changed from 1776 to 2017, dividing the history of the United States into four eras: the Founding Era, the Civil War Era, the New Deal Era, and the Modern Era. First, the First Amendment's clauses on religion are examined, where I focus on the separation between church and state as well as the concepts of "establishment" and "free exercise." The First Amendment transitions from classically liberal, to conservative, to progressively liberal and classically liberal, to progressively liberal and libertarian. Next, we look at the Second Amendment's notions of a "militia" and the "right to keep and bear arms." The Second Amendment's interpretations begin classically liberal, then change to classically liberal and progressively liberal, to progressively liberal, to conservative. Finally, the analysis on the Fourth Amendment's "unreasonable searches and seizures" as well as "warrants" lends evidence to ideological interpretations. The Fourth Amendment, like the other two, starts classically liberal for two eras, then becomes libertarian, and finally ends libertarian and conservative. The implications of each of these conclusions are then discussed, with emphasis on public opinion in society during the era in question, the ways in which the ideologies in each era seem to build upon one another, the ideologies of the justices who wrote the opinions, and the ideology of the court.
Created2017-12