Matching Items (64)
151748-Thumbnail Image.png
Description
For over a century, researchers have been investigating collective cognition, in which a group of individuals together process information and act as a single cognitive unit. However, I still know little about circumstances under which groups achieve better (or worse) decisions than individuals. My dissertation research directly addressed this longstanding

For over a century, researchers have been investigating collective cognition, in which a group of individuals together process information and act as a single cognitive unit. However, I still know little about circumstances under which groups achieve better (or worse) decisions than individuals. My dissertation research directly addressed this longstanding question, using the house-hunting ant Temnothorax rugatulus as a model system. Here I applied concepts and methods developed in psychology not only to individuals but also to colonies in order to investigate differences of their cognitive abilities. This approach is inspired by the superorganism concept, which sees a tightly integrated insect society as the analog of a single organism. I combined experimental manipulations and models to elucidate the emergent processes of collective cognition. My studies show that groups can achieve superior cognition by sharing the burden of option assessment among members and by integrating information from members using positive feedback. However, the same positive feedback can lock the group into a suboptimal choice in certain circumstances. Although ants are obligately social, my results show that they can be isolated and individually tested on cognitive tasks. In the future, this novel approach will help the field of animal behavior move towards better understanding of collective cognition.
ContributorsSasaki, Takao (Author) / Pratt, Stephen C (Thesis advisor) / Amazeen, Polemnia (Committee member) / Liebig, Jürgen (Committee member) / Janssen, Marco (Committee member) / Fewell, Jennifer (Committee member) / Hölldobler, Bert (Committee member) / Arizona State University (Publisher)
Created2013
151199-Thumbnail Image.png
Description
Salmonella enterica is a gastrointestinal (GI) pathogen that can cause systemic diseases. It invades the host through the GI tract and can induce powerful immune responses in addition to disease. Thus, it is considered as a promising candidate to use as oral live vaccine vectors. Scientists have been making great

Salmonella enterica is a gastrointestinal (GI) pathogen that can cause systemic diseases. It invades the host through the GI tract and can induce powerful immune responses in addition to disease. Thus, it is considered as a promising candidate to use as oral live vaccine vectors. Scientists have been making great efforts to get a properly attenuated Salmonella vaccine strain for a long time, but could not achieve a balance between attenuation and immunogenicity. So the regulated delayed attenuation/lysis Salmonella vaccine vectors were proposed as a design to seek this balance. The research work is progressing steadily, but more improvements need to be made. As one of the possible improvements, the cyclic adenosine monophosphate (cAMP) -independent cAMP receptor protein (Crp*) is expected to protect the Crp-dependent crucial regulator, araC PBAD, in these vaccine designs from interference by glucose, which decreases synthesis of cAMP, and enhance the colonizing ability by and immunogenicity of the vaccine strains. In this study, the cAMP-independent crp gene mutation, crp-70, with or without araC PBAD promoter cassette, was introduced into existing Salmonella vaccine strains. Then the plasmid stability, growth rate, resistance to catabolite repression, colonizing ability, immunogenicity and protection to challenge of these new strains were compared with wild-type crp or araC PBAD crp strains using western blots, enzyme-linked immunosorbent assays (ELISA) and animal studies, so as to evaluate the effects of the crp-70 mutation on the vaccine strains. The performances of the crp-70 strains in some aspects were closed to or even exceeded the crp+ strains, but generally they did not exhibit the expected advantages compared to their wild-type parents. Crp-70 rescued the expression of araC PBAD fur from catabolite repression. The strain harboring araC PBAD crp-70 was severely affected by its slow growth, and its colonizing ability and immunogenicity was much weaker than the other strains. The Pcrp crp-70 strain showed relatively good ability in colonization and immune stimulation. Both the araC PBAD crp-70 and the Pcrp crp-70 strains could provide certain levels of protection against the challenge with virulent pneumococci, which were a little lower than for the crp+ strains.
ContributorsShao, Shihuan (Author) / Curtiss, Roy (Thesis advisor) / Arizona State University (Publisher)
Created2012
151119-Thumbnail Image.png
Description
The spread of invasive species may be greatly affected by human responses to prior species spread, but models and estimation methods seldom explicitly consider human responses. I investigate the effects of management responses on estimates of invasive species spread rates. To do this, I create an agent-based simulation model of

The spread of invasive species may be greatly affected by human responses to prior species spread, but models and estimation methods seldom explicitly consider human responses. I investigate the effects of management responses on estimates of invasive species spread rates. To do this, I create an agent-based simulation model of an insect invasion across a county-level citrus landscape. My model provides an approximation of a complex spatial environment while allowing the "truth" to be known. The modeled environment consists of citrus orchards with insect pests dispersing among them. Insects move across the simulation environment infesting orchards, while orchard managers respond by administering insecticide according to analyst-selected behavior profiles and management responses may depend on prior invasion states. Dispersal data is generated in each simulation and used to calculate spread rate via a set of estimators selected for their predominance in the empirical literature. Spread rate is a mechanistic, emergent phenomenon measured at the population level caused by a suite of latent biological, environmental, and anthropogenic. I test the effectiveness of orchard behavior profiles on invasion suppression and evaluate the robustness of the estimators given orchard responses. I find that allowing growers to use future expectations of spread in management decisions leads to reduced spread rates. Acting in a preventative manner by applying insecticide before insects are actually present, orchards are able to lower spread rates more than by reactive behavior alone. Spread rates are highly sensitive to spatial configuration. Spatial configuration is hardly a random process, consisting of many latent factors often not accounted for in spread rate estimation. Not considering these factors may lead to an omitted variables bias and skew estimation results. The ability of spread rate estimators to predict future spread varies considerably between estimators, and with spatial configuration, invader biological parameters, and orchard behavior profile. The model suggests that understanding the latent factors inherent to dispersal is important for selecting phenomenological models of spread and interpreting estimation results. This indicates a need for caution when evaluating spread. Although standard practice, current empirical estimators may both over- and underestimate spread rate in the simulation.
ContributorsShanafelt, David William (Author) / Fenichel, Eli P (Thesis advisor) / Richards, Timothy (Committee member) / Janssen, Marco (Committee member) / Arizona State University (Publisher)
Created2012
136686-Thumbnail Image.png
Description
Collective decision making in social organism societies involves a large network of communication systems. Studying the processes behind the transmission of information allows for greater understanding of the decision making capabilities of a group. For Temnothorax rugatulus colonies, information is commonly spread in the form of tandem running, a linear

Collective decision making in social organism societies involves a large network of communication systems. Studying the processes behind the transmission of information allows for greater understanding of the decision making capabilities of a group. For Temnothorax rugatulus colonies, information is commonly spread in the form of tandem running, a linear recruitment pattern where a leading ant uses a short-ranged pheromone to direct a following ant to a target location (in tandem).The observed phenomenon of reverse tandem running (RTR), where a follower is lead from a target back to the home nest, has not been as extensively studied as forward tandem running and transportation recruitment activities. This study seeks to explain a potential reason for the presence of the RTR behavior; more specifically, the study explores the idea that reverse tandem run followers are being shown a specific route to the home nest by a highly experienced and efficient leading ant. Ten colonies had migrations induced experimentally in order to generate some reverse tandem running activity. Once an RTR has been observed, the follower and leader were studied for behavior and their pathways were analyzed. It was seen that while RTR paths were quite efficient (1.4x a straight line distance), followers did not experience a statistically significant improvement in their pathways between the home and target nests (based on total distance traveled) when compared to similar non-RTR ants. Further, RTR leading ants were no more efficient than other non-RTR ants. It was observed that some followers began recruiting after completion of an RTR, but the number than changed their behavior was not significant. Thus, the results of this experiment cannot conclusively show that RTR followers are utilizing reverse tandem runs to improve their routes between the home and target nests.
ContributorsColling, Blake David (Author) / Pratt, Stephen (Thesis director) / Liebig, Juergen (Committee member) / Sasaki, Takao (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-12
137047-Thumbnail Image.png
Description
Evolutionary theory predicts that animal behavior is generally governed by decision rules (heuristics) which adhere to ecological rationality: the tendency to make decisions that maximize fitness in most situations the animal encounters. However, the particular heuristics used by ant colonies of the genus Temnothorax and their propensity towards ecological rationality

Evolutionary theory predicts that animal behavior is generally governed by decision rules (heuristics) which adhere to ecological rationality: the tendency to make decisions that maximize fitness in most situations the animal encounters. However, the particular heuristics used by ant colonies of the genus Temnothorax and their propensity towards ecological rationality are up for debate. These ants are adept at choosing a nest site, making a collective decision based on complex interactions between the many individual choices made by workers. Colonies will migrate between nests either upon the destruction of their current home or the discovery of a sufficiently superior nest. This study offers a descriptive analysis of the heuristics potentially used in nest-site decision-making. Colonies were offered a choice of nests characterized by the Ebbinghaus Illusion: a perceptual illusion which effectively causes the viewer to perceive a circle as larger when it is surrounded by small circles than when that same circle is surrounded by large circles. Colonies were separated into two conditions: in one, they were given the option to move to a high-quality nest surrounded by poor-quality nests, and in the other they were given the option to move to a high-quality nest surrounded by medium-quality nests. The colonies in the poor condition were found to be more likely to move to the good nest than were colonies in the medium condition at a statistically significant level. That is, they responded to the Ebbinghaus Effect in the way that is normally expected. This result was discussed in terms of its implications for the ecological rationality of the nest-site choice behavior of these ants.
ContributorsTalken, Lucas Warren (Author) / Pratt, Stephen (Thesis director) / Sasaki, Takao (Committee member) / Liebig, Juergen (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Psychology (Contributor) / Economics Program in CLAS (Contributor)
Created2014-05
137493-Thumbnail Image.png
DescriptionThis paper provides an analysis of the differences in impacts made by companies that promote their sustainability efforts. A comparison of companies reveals that the ones with greater supply chain influence and larger consumer bases can make more concrete progress in terms of accomplishment for the sustainability realm.
ContributorsBeaubien, Courtney Lynn (Author) / Anderies, John (Thesis director) / Allenby, Brad (Committee member) / Janssen, Marco (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
DescriptionA novel and unconventional approach for delivering a eukaryotic apoptosis factor, TNF-related apoptosis-inducing ligand (TRAIL), to cancer cells within and around necrotizing tumors by utilizing a S. Typhimurium purine requiring auxotroph as a biological vector to develop two anticancer therapies with multiple modality and broad economic feasibility.
ContributorsKoons, Andrew (Author) / Curtiss, Roy (Thesis director) / Lake, Douglas (Committee member) / Janthakahalli, Nagaraj Vinay (Committee member) / Barrett, The Honors College (Contributor)
Created2013-12
141475-Thumbnail Image.png
Description

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection,

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection, but few examples have been described in nature. Here we show that group selection can explain the evolution of cooperative nest founding in the harvester ant Pogonomyrmex californicus. Through most of this species’ range, colonies are founded by single queens, but in some populations nests are instead founded by cooperative groups of unrelated queens. In mixed groups of cooperative and single-founding queens, we found that aggressive individuals had a survival advantage within their nest, but foundress groups with such non-cooperators died out more often than those with only cooperative members. An agent-based model shows that the between-group advantage of the cooperative phenotype drives it to fixation, despite its within-group disadvantage, but only when population density is high enough to make between-group competition intense. Field data show higher nest density in a population where cooperative founding is common, consistent with greater density driving the evolution of cooperative foundation through group selection.

ContributorsShaffer, Zachary (Author) / Sasaki, Takao (Author) / Haney, Brian (Author) / Janssen, Marco (Author) / Pratt, Stephen (Author) / Fewell, Jennifer (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-07-28
135630-Thumbnail Image.png
Description
Climate change presents the urgent need for effective sustainable water management that is capable of preserving natural resources while maintaining economical stability. States like California rely heavily on groundwater pumping for agricultural use, contributing to land subsidence and insufficient returns to water resources. The recent California drought has impacted agricultural

Climate change presents the urgent need for effective sustainable water management that is capable of preserving natural resources while maintaining economical stability. States like California rely heavily on groundwater pumping for agricultural use, contributing to land subsidence and insufficient returns to water resources. The recent California drought has impacted agricultural production of certain crops. In this thesis, we present an agent-based model of farmers adapting to drought conditions by making crop choice decisions, much like the decisions Californian farmers have made. We use the Netlogo platform to capture the 2D spatial view of an agricultural system with changes in annual rainfall due to drought conditions. The goal of this model is to understand some of the simple rules farmers may follow to self-govern their consumption of a water resource. Farmer agents make their crop decisions based on deficit irrigation crop production function and a net present value discount rate. The farmers choose between a thirsty crop with a high production cost and a dry crop with a low production cost. Simulations results show that farmers switch crops in accordance with limited water and land resources. Farmers can maintain profit and yield by following simple rules of crop switching based on future yields and optimal irrigation. In drought conditions, individual agents expecting lower annual rainfall were able to increase their total profits. The maintenance of crop yield and profit is evidence of successful adaptation when farmers switch to crops that require less water.
ContributorsGokool, Rachael Shanta (Author) / Janssen, Marco (Thesis director) / Eakin, Hallie (Committee member) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
130413-Thumbnail Image.png
Description
Because collective cognition emerges from local signaling among group members, deciphering communication systems is crucial to understanding the underlying mechanisms. Alarm signals are widespread in the social insects and can elicit a variety of behavioral responses to danger, but the functional plasticity of these signals has not been well studied.

Because collective cognition emerges from local signaling among group members, deciphering communication systems is crucial to understanding the underlying mechanisms. Alarm signals are widespread in the social insects and can elicit a variety of behavioral responses to danger, but the functional plasticity of these signals has not been well studied. Here we report an alarm pheromone in the ant Temnothorax rugatulus that elicits two different behaviors depending on context. When an ant was tethered inside an unfamiliar nest site and unable to move freely, she released a pheromone from her mandibular gland that signaled other ants to reject this nest as a potential new home, presumably to avoid potential danger. When the same pheromone was presented near the ants' home nest, they were instead attracted to it, presumably to respond to a threat to the colony. We used coupled gas chromatography/mass spectrometry to identify candidate compounds from the mandibular gland and tested each one in a nest choice bioassay. We found that 2,5-dimethylpyrazine was sufficient to induce rejection of a marked new nest and also to attract ants when released at the home nest. This is the first detailed investigation of chemical communication in the leptothoracine ants. We discuss the possibility that this pheromone's deterrent function can improve an emigrating colony's nest site selection performance.
Created2014-09-01