Matching Items (152)
155072-Thumbnail Image.png
Description
This work demonstrates novel nBn photodetectors including mid-wave infrared (MWIR) nBn photodetectors based on InAs/InAsSb type-II superlattices (T2SLs) with charge as the output signal, and visible nBn photodetectors based on CdTe with current output. Furthermore, visible/MWIR two-color photodetectors (2CPDs) are fabricated through monolithic integration of the CdTe nBn photodetector and

This work demonstrates novel nBn photodetectors including mid-wave infrared (MWIR) nBn photodetectors based on InAs/InAsSb type-II superlattices (T2SLs) with charge as the output signal, and visible nBn photodetectors based on CdTe with current output. Furthermore, visible/MWIR two-color photodetectors (2CPDs) are fabricated through monolithic integration of the CdTe nBn photodetector and an InSb photodiode.

The MWIR nBn photodetectors have a potential well for holes present in the barrier layer. At low voltages of < −0.2 V, which ensure low dark current <10-5 A/cm2 at 77 K, photogenerated holes are collected in this well with a storage lifetime of 40 s. This charge collection process is an in-device signal integration process that reduces the random noise significantly. Since the stored holes can be readout laterally as in charge-coupled devices, it is therefore possible to make charge-output nBn with much lower noise than conventional current-output nBn photodetectors.

The visible nBn photodetectors have a CdTe absorber layer and a ZnTe barrier layer with an aligned valence band edge. By using a novel ITO/undoped-CdTe top contact design, it has achieved a high specific detectivity of 3×1013 cm-Hz1/2/W at room temperature. Particularly, this CdTe nBn photodetector grown on InSb substrates enables the monolithic integration of CdTe and InSb photodetectors, and provides a platform to study in-depth device physics of nBn photodetectors at room temperature.

Furthermore, the visible/MWIR 2CPD has been developed by the monolithic integration of the CdTe nBn and an InSb photodiode through an n-CdTe/p-InSb tunnel junction. At 77 K, the photoresponse of the 2CPD can be switched between a 1-5.5 μm MWIR band and a 350-780 nm visible band by illuminating the device with an external light source or not, and applying with proper voltages. Under optimum conditions, the 2CPD has achieved a MWIR peak responsivity of 0.75 A/W with a band rejection ratio (BRR) of 52 dB, and a visible peak responsivity of 0.3 A/W with a BRR of 18 dB. This 2CPD has enabled future compact image sensors with high fill-factor and responsivity switchable between visible and MWIR colors.
ContributorsHe, Zhaoyu (Author) / Zhang, Yong-Hang (Thesis advisor) / Vasileska, Dragica (Committee member) / Goryll, Michael (Committee member) / Johnson, Shane (Committee member) / Arizona State University (Publisher)
Created2016
154102-Thumbnail Image.png
Description
InAs/InAsSb type-II superlattices (T2SLs) can be considered as potential alternatives for conventional HgCdTe photodetectors due to improved uniformity, lower manufacturing costs with larger substrates, and possibly better device performance. This dissertation presents a comprehensive study on the structural, optical and electrical properties of InAs/InAsSb T2SLs grown by Molecular Beam Epitaxy.

InAs/InAsSb type-II superlattices (T2SLs) can be considered as potential alternatives for conventional HgCdTe photodetectors due to improved uniformity, lower manufacturing costs with larger substrates, and possibly better device performance. This dissertation presents a comprehensive study on the structural, optical and electrical properties of InAs/InAsSb T2SLs grown by Molecular Beam Epitaxy.

The effects of different growth conditions on the structural quality were thoroughly investigated. Lattice-matched condition was successfully achieved and material of exceptional quality was demonstrated.

After growth optimization had been achieved, structural defects could hardly be detected, so different characterization techniques, including etch-pit-density (EPD) measurements, cathodoluminescence (CL) imaging and X-ray topography (XRT), were explored, in attempting to gain better knowledge of the sparsely distributed defects. EPD revealed the distribution of dislocation-associated pits across the wafer. Unfortunately, the lack of contrast in images obtained by CL imaging and XRT indicated their inability to provide any quantitative information about defect density in these InAs/InAsSb T2SLs.

The nBn photodetectors based on mid-wave infrared (MWIR) and long-wave infrared (LWIR) InAs/InAsSb T2SLs were fabricated. The significant difference in Ga composition in the barrier layer coupled with different dark current behavior, suggested the possibility of different types of band alignment between the barrier layers and the absorbers. A positive charge density of 1.8 × 1017/cm3 in the barrier of MWIR nBn photodetector, as determined by electron holography, confirmed the presence of a potential well in its valence band, thus identifying type-II alignment. In contrast, the LWIR nBn photodetector was shown to have type-I alignment because no sign of positive charge was detected in its barrier.

Capacitance-voltage measurements were performed to investigate the temperature dependence of carrier densities in a metal-oxide-semiconductor (MOS) structure based on MWIR InAs/InAsSb T2SLs, and a nBn structure based on LWIR InAs/InAsSb T2SLs. No carrier freeze-out was observed in either sample, indicating very shallow donor levels. The decrease in carrier density when temperature increased was attributed to the increased density of holes that had been thermally excited from localized states near the oxide/semiconductor interface in the MOS sample. No deep-level traps were revealed in deep-level transient spectroscopy temperature scans.
ContributorsShen, Xiaomeng (Author) / Zhang, Yong-Hang (Thesis advisor) / Smith, David J. (Thesis advisor) / Alford, Terry (Committee member) / Goryll, Michael (Committee member) / Mccartney, Martha R (Committee member) / Arizona State University (Publisher)
Created2015
152484-Thumbnail Image.png
Description
In this dissertation, the interface chemistry and electronic structure of plasma-enhanced atomic layer deposited (PEALD) dielectrics on GaN are investigated with x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). Three interrelated issues are discussed in this study: (1) PEALD dielectric growth process optimization, (2) interface electronic structure of comparative PEALD

In this dissertation, the interface chemistry and electronic structure of plasma-enhanced atomic layer deposited (PEALD) dielectrics on GaN are investigated with x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). Three interrelated issues are discussed in this study: (1) PEALD dielectric growth process optimization, (2) interface electronic structure of comparative PEALD dielectrics on GaN, and (3) interface electronic structure of PEALD dielectrics on Ga- and N-face GaN. The first study involved an in-depth case study of PEALD Al2O3 growth using dimethylaluminum isopropoxide, with a special focus on oxygen plasma effects. Saturated and self-limiting growth of Al2O3 films were obtained with an enhanced growth rate within the PEALD temperature window (25-220 ºC). The properties of Al2O3 deposited at various temperatures were characterized to better understand the relation between the growth parameters and film properties. In the second study, the interface electronic structures of PEALD dielectrics on Ga-face GaN films were measured. Five promising dielectrics (Al2O3, HfO2, SiO2, La2O3, and ZnO) with a range of band gap energies were chosen. Prior to dielectric growth, a combined wet chemical and in-situ H2/N2 plasma clean process was employed to remove the carbon contamination and prepare the surface for dielectric deposition. The surface band bending and band offsets were measured by XPS and UPS for dielectrics on GaN. The trends of the experimental band offsets on GaN were related to the dielectric band gap energies. In addition, the experimental band offsets were near the calculated values based on the charge neutrality level model. The third study focused on the effect of the polarization bound charge of the Ga- and N-face GaN on interface electronic structures. A surface pretreatment process consisting of a NH4OH wet chemical and an in-situ NH3 plasma treatment was applied to remove carbon contamination, retain monolayer oxygen coverage, and potentially passivate N-vacancy related defects. The surface band bending and polarization charge compensation of Ga- and N-face GaN were investigated. The surface band bending and band offsets were determined for Al2O3, HfO2, and SiO2 on Ga- and N-face GaN. Different dielectric thicknesses and post deposition processing were investigated to understand process related defect formation and/or reduction.
ContributorsYang, Jialing (Author) / Nemanich, Robert J (Thesis advisor) / Chen, Tingyong (Committee member) / Peng, Xihong (Committee member) / Ponce, Fernando (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2014
153275-Thumbnail Image.png
Description
In this work, a highly sensitive strain sensing technique is developed to realize in-plane strain mapping for microelectronic packages or emerging flexible or foldable devices, where mechanical or thermal strain is a major concern that could affect the performance of the working devices or even lead to the failure of

In this work, a highly sensitive strain sensing technique is developed to realize in-plane strain mapping for microelectronic packages or emerging flexible or foldable devices, where mechanical or thermal strain is a major concern that could affect the performance of the working devices or even lead to the failure of the devices. Therefore strain sensing techniques to create a contour of the strain distribution is desired.

The developed highly sensitive micro-strain sensing technique differs from the existing strain mapping techniques, such as digital image correlation (DIC)/micro-Moiré techniques, in terms of working mechanism, by filling a technology gap that requires high spatial resolution while simultaneously maintaining a large field-of-view. The strain sensing mechanism relies on the scanning of a tightly focused laser beam onto the grating that is on the sample surface to detect the change in the diffracted beam angle as a result of the strain. Gratings are fabricated on the target substrates to serve as strain sensors, which carries the strain information in the form of variations in the grating period. The geometric structure of the optical system inherently ensures the high sensitivity for the strain sensing, where the nanoscale change of the grating period is amplified by almost six orders into a diffraction peak shift on the order of several hundred micrometers. It significantly amplifies the small signal measurements so that the desired sensitivity and accuracy can be achieved.

The important features, such as strain sensitivity and spatial resolution, for the strain sensing technique are investigated to evaluate the technique. The strain sensitivity has been validated by measurements on homogenous materials with well known reference values of CTE (coefficient of thermal expansion). 10 micro-strain has been successfully resolved from the silicon CTE extraction measurements. Furthermore, the spatial resolution has been studied on predefined grating patterns, which are assembled to mimic the uneven strain distribution across the sample surface. A resolvable feature size of 10 µm has been achieved with an incident laser spot size of 50 µm in diameter.

In addition, the strain sensing technique has been applied to a composite sample made of SU8 and silicon, as well as the microelectronic packages for thermal strain mappings.
ContributorsLiang, Hanshuang (Author) / Yu, Hongbin (Thesis advisor) / Poon, Poh Chieh Benny (Committee member) / Jiang, Hanqing (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2014
152692-Thumbnail Image.png
Description
Nanolasers represents the research frontier in both the areas of photonics and nanotechnology for its interesting properties in low dimension physics, its appealing prospects in integrated photonics, and other on-chip applications. In this thesis, I present my research work on fabrication and characterization of a new type of nanolasers: metallic

Nanolasers represents the research frontier in both the areas of photonics and nanotechnology for its interesting properties in low dimension physics, its appealing prospects in integrated photonics, and other on-chip applications. In this thesis, I present my research work on fabrication and characterization of a new type of nanolasers: metallic cavity nanolasers. The last ten years witnessed a dramatic paradigm shift from pure dielectric cavity to metallic cavity in the research of nanolasers. By using low loss metals such as silver, which is highly reflective at near infrared, light can be confined in an ultra small cavity or waveguide with sub-wavelength dimensions, thus enabling sub-wavelength cavity lasers. Based on this idea, I fabricated two different kinds of metallic cavity nanolasers with rectangular and circular geometries with InGaAs as the gain material and silver as the metallic shell. The lasing wavelength is around 1.55 μm, intended for optical communication applications. Continuous wave (CW) lasing at cryogenic temperature under current injection was achieved on devices with a deep sub-wavelength physical cavity volume smaller than 0.2 λ3. Improving device fabrication process is one of the main challenges in the development of metallic cavity nanolasers due to its ultra-small size. With improved fabrication process and device design, CW lasing at room temperature was demonstrated as well on a sub-wavelength rectangular device with a physical cavity volume of 0.67 λ3. Experiments verified that a small circular nanolasers supporting TE¬01 mode can generate an azimuthal polarized laser beam, providing a compact such source under electrical injection. Sources with such polarizations could have many special applications. Study of digital modulation of circular nanolasers showed that laser noise is an important factor that will affect the data rate of the nanolaser when used as the light source in optical interconnects. For future development, improving device fabrication processes is required to improve device performance. In addition, techniques need to be developed to realize nanolaser/Si waveguide integration. In essence, resolving these two critical issues will finally pave the way for these nanolasers to be used in various practical applications.
ContributorsDing, Kang (Author) / Ning, Cun-Zheng (Thesis advisor) / Yu, Hongbin (Committee member) / Palais, Joseph (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2014
152850-Thumbnail Image.png
Description
This dissertation presents research findings on the three materials systems: lateral Si nanowires (SiNW), In2Se3/Bi2Se3 heterostructures and graphene. The first part of the thesis was focused on the growth and characterization of lateral SiNW. Lateral here refers to wires growing along the plane of substrate; vertical NW on the other

This dissertation presents research findings on the three materials systems: lateral Si nanowires (SiNW), In2Se3/Bi2Se3 heterostructures and graphene. The first part of the thesis was focused on the growth and characterization of lateral SiNW. Lateral here refers to wires growing along the plane of substrate; vertical NW on the other hand grow out of the plane of substrate. It was found, using the Au-seeded vapor – liquid – solid technique, that epitaxial single-crystal SiNW can be grown laterally along Si(111) substrates that have been miscut toward [11− 2]. The ratio of lateral-to-vertical NW was found to increase as the miscut angle increased and as disilane pressure and substrate temperature decreased. Based on this observation, growth parameters were identified whereby all of the deposited Au seeds formed lateral NW. Furthermore, the nanofaceted substrate guided the growth via a mechanism that involved pinning of the trijunction at the liquid/solid interface of the growing nanowire.

Next, the growth of selenide heterostructures was explored. Specifically, molecular beam epitaxy was utilized to grow In2Se3 and Bi2Se3 films on h-BN, highly oriented pyrolytic graphite and Si(111) substrates. Growth optimizations of In2Se3 and Bi2Se3 films were carried out by systematically varying the growth parameters. While the growth of these films was demonstrated on h-BN and HOPG surface, the majority of the effort was focused on growth on Si(111). Atomically flat terraces that extended laterally for several hundred nm, which were separated by single quintuple layer high steps characterized surface of the best In2Se3 films grown on Si(111). These In2Se3 films were suitable for subsequent high quality epitaxy of Bi2Se3 .

The last part of this dissertation was focused on a recently initiated and ongoing study of graphene growth on liquid metal surfaces. The initial part of the study comprised a successful modification of an existing growth system to accommodate graphene synthesis and process development for reproducible graphene growth. Graphene was grown on Cu, Au and AuCu alloys at varioua conditions. Preliminary results showed triangular features on the liquid part of the Cu metal surface. For Au, and AuCu alloys, hexagonal features were noticed both on the solid and liquid parts.
ContributorsRathi, Somilkumar J (Author) / Drucker, Jeffery (Thesis advisor) / Smith, David (Committee member) / Chen, Tingyong (Committee member) / Arizona State University (Publisher)
Created2014
153758-Thumbnail Image.png
Description
GaN and AlGaN have shown great potential in next-generation power and RF electronics. However, these devices are limited by reliability issues such as leakage current and current collapse that result from surface and interface states on GaN and AlGaN. This dissertation, therefore, examined these electronic states, focusing on the following

GaN and AlGaN have shown great potential in next-generation power and RF electronics. However, these devices are limited by reliability issues such as leakage current and current collapse that result from surface and interface states on GaN and AlGaN. This dissertation, therefore, examined these electronic states, focusing on the following two points:

First, the surface electronic state configuration was examined with regards to the polarization bound 1013 charges/cm2 that increases with aluminum content. This large bound charge requires compensation either externally by surface states or internally by the space charge regions as relates to band bending. In this work, band bending was measured after different surface treatments of GaN and AlGaN to determine the effects of specific surface states on the electronic state configuration. Results showed oxygen-terminated N-face GaN, Ga-face GaN, and Ga-face Al0.25Ga0.75N surface were characterized by similar band bending regardless of the polarization bound charge, suggesting a Fermi level pinning state ~0.4-0.8 eV below the conduction band minimum. On oxygen-free Ga-face GaN, Al0.15Ga0.85N, Al0.25Ga0.75N, and Al0.35Ga0.65N, band bending increased slightly with aluminum content and thus did not exhibit the same pinning behavior; however, there was still significant compensating charge on these surfaces (~1013 charges/cm2). This charge is likely related to nitrogen vacancies and/or gallium dangling bonds.

In addition, this wozrk investigated the interface electronic state configuration of dielectric/GaN and AlGaN interfaces with regards to deposition conditions and aluminum content. Specifically, oxygen plasma-enhanced atomic layer deposited (PEALD) was used to deposit SiO2. Growth temperature was shown to influence the film quality, where room temperature deposition produced the highest quality films in terms of electrical breakdown. In addition, the valence band offsets (VBOs) appeared to decrease with the deposition temperature, which likely related to an electric field across the Ga2O3 interfacial layer. VBOs were also determined with respect to aluminum content at the PEALD-SiO2/AlxGa1-xN interface, giving 3.0, 2.9, 2.9, and 2.8 eV for 0%, 15%, 25%, and 35% aluminum content, respectively—with corresponding conduction band offsets of 2.5, 2.2, 1.9, and 1.8 eV. This suggests the largest difference manifests in the conduction band, which is in agreement with the charge neutrality level model.
ContributorsEller, Brianna (Author) / Nemanich, Robert J (Thesis advisor) / Chowdhury, Srabanti (Committee member) / McCartney, Martha (Committee member) / Ponce, Fernando (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2015
153098-Thumbnail Image.png
Description
There has been recent interest in demonstrating solar cells which approach the detailed-balance or thermodynamic efficiency limit in order to establish a model system for which mass-produced solar cells can be designed. Polycrystalline CdS/CdTe heterostructures are currently one of many competing solar cell material systems. Despite being polycrystalline, efficiencies u

There has been recent interest in demonstrating solar cells which approach the detailed-balance or thermodynamic efficiency limit in order to establish a model system for which mass-produced solar cells can be designed. Polycrystalline CdS/CdTe heterostructures are currently one of many competing solar cell material systems. Despite being polycrystalline, efficiencies up to 21 % have been demonstrated by the company First Solar. However, this efficiency is still far from the detailed-balance limit of 32.1 % for CdTe. This work explores the use of monocrystalline CdTe/MgCdTe and ZnTe/CdTe/MgCdTe double heterostructures (DHs) grown on (001) InSb substrates by molecular beam epitaxy (MBE) for photovoltaic applications.

Undoped CdTe/MgCdTe DHs are first grown in order to determine the material quality of the CdTe epilayer and to optimize the growth conditions. DH samples show strong photoluminescence with over double the intensity as that of a GaAs/AlGaAs DH with an identical layer structure. Time-resolved photoluminescence of the CdTe/MgCdTe DH gives a carrier lifetime of up to 179 ns for a 2 µm thick CdTe layer, which is more than one order of magnitude longer than that of polycrystalline CdTe films. MgCdTe barrier layers are found to be effective at confining photogenerated carriers and have a relatively low interface recombination velocity of 461 cm/s. The optimal growth temperature and Cd/Te flux ratio is determined to be 265 °C and 1.5, respectively.

Monocrystalline ZnTe/CdTe/MgCdTe P-n-N DH solar cells are designed, grown, processed into solar cell devices, and characterized. A maximum efficiency of 6.11 % is demonstrated for samples without an anti-reflection coating. The low efficiency is mainly due to the low open-circuit voltage (Voc), which is attributed to high dark current caused by interface recombination at the ZnTe/CdTe interface. Low-temperature measurements show a linear increase in Voc with decreasing temperature down to 77 K, which suggests that the room-temperature operation is limited by non-radiative recombination. An open-circuit voltage of 1.22 V and an efficiency of 8.46 % is demonstrated at 77 K. It is expected that a coherently strained MgCdTe/CdTe/MgCdTe DH solar cell design will produce higher efficiency and Voc compared to the ZnTe/CdTe/MgCdTe design with relaxed ZnTe layer.
ContributorsDiNezza, Michael John (Author) / Zhang, Yong-Hang (Thesis advisor) / Johnson, Shane (Committee member) / Tao, Meng (Committee member) / Holman, Zachary (Committee member) / Arizona State University (Publisher)
Created2014
154755-Thumbnail Image.png
Description
High-performance III-V semiconductors based on ternary alloys and superlattice systems are fabricated, studied, and compared for infrared optoelectronic applications. InAsBi is a ternary alloy near the GaSb lattice constant that is not as thoroughly investigated as other III-V alloys and that is challenging to produce as Bi has a

High-performance III-V semiconductors based on ternary alloys and superlattice systems are fabricated, studied, and compared for infrared optoelectronic applications. InAsBi is a ternary alloy near the GaSb lattice constant that is not as thoroughly investigated as other III-V alloys and that is challenging to produce as Bi has a tendency to surface segregate and form droplets during growth rather than incorporate. A growth window is identified within which high-quality droplet-free bulk InAsBi is produced and Bi mole fractions up to 6.4% are obtained. Photoluminescence with high internal quantum efficiency is observed from InAs/InAsBi quantum wells. The high structural and optical quality of the InAsBi materials examined demonstrates that bulk, quantum well, and superlattice structures utilizing InAsBi are an important design option for efficient infrared coverage.

Another important infrared material system is InAsSb and the strain-balanced InAs/InAsSb superlattice on GaSb. Detailed examination of X-ray diffraction, photoluminescence, and spectroscopic ellipsometry data provides the temperature and composition dependent bandgap of bulk InAsSb. The unintentional incorporation of approximately 1% Sb into the InAs layers of the superlattice is measured and found to significantly impact the analysis of the InAs/InAsSb band alignment. In the analysis of the absorption spectra, the ground state absorption coefficient and transition strength of the superlattice are proportional to the square of the electron-hole wavefunction overlap; wavefunction overlap is therefore a major design parameter in terms of optimizing absorption in these materials. Furthermore in addition to improvements through design optimization, the optical quality of the materials studied is found to be positively enhanced with the use of Bi as a surfactant during molecular beam epitaxy growth.

A software tool is developed that calculates and optimizes the miniband structure of semiconductor superlattices, including bismide-based designs. The software has the capability to limit results to designs that can be produced with high structural and optical quality, and optimized designs in terms of maximizing absorption are identified for several infrared superlattice systems at the GaSb lattice constant. The accuracy of the software predictions are tested with the design and growth of an optimized mid-wave infrared InAs/InAsSb superlattice which exhibits superior optical and absorption properties.
ContributorsWebster, Preston Thomas (Author) / Johnson, Shane R (Thesis advisor) / Zhang, Yong-Hang (Committee member) / Menéndez, Jose (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2016
155558-Thumbnail Image.png
Description
Polycrystalline CdS/CdTe solar cells continue to dominate the thin-film photovoltaics industry with an achieved record efficiency of over 22% demonstrated by First Solar, yet monocrystalline CdTe devices have received considerably less attention over the years. Monocrystalline CdTe double-heterostructure solar cells show great promise with respect to addressing the problem of

Polycrystalline CdS/CdTe solar cells continue to dominate the thin-film photovoltaics industry with an achieved record efficiency of over 22% demonstrated by First Solar, yet monocrystalline CdTe devices have received considerably less attention over the years. Monocrystalline CdTe double-heterostructure solar cells show great promise with respect to addressing the problem of low Voc with the passing of the 1 V benchmark. Rapid progress has been made in driving the efficiency in these devices ever closer to the record presently held by polycrystalline thin-films. This achievement is primarily due to the utilization of a remote p-n heterojunction in which the heavily doped contact materials, which are so problematic in terms of increasing non-radiative recombination inside the absorber, are moved outside of the CdTe double heterostructure with two MgyCd1-yTe barrier layers to provide confinement and passivation at the CdTe surfaces. Using this design, the pursuit and demonstration of efficiencies beyond 20% in CdTe solar cells is reported through the study and optimization of the structure barriers, contacts layers, and optical design. Further development of a wider bandgap MgxCd1-xTe solar cell based on the same design is included with the intention of applying this knowledge to the development of a tandem solar cell constructed on a silicon subcell. The exploration of different hole-contact materials—ZnTe, CuZnS, and a-Si:H—and their optimization is presented throughout the work. Devices utilizing a-Si:H hole contacts exhibit open-circuit voltages of up to 1.11 V, a maximum total-area efficiency of 18.5% measured under AM1.5G, and an active-area efficiency of 20.3% for CdTe absorber based devices. The achievement of voltages beyond 1.1V while still maintaining relatively high fill factors with no rollover, either before or after open-circuit, is a promising indicator that this approach can result in devices surpassing the 22% record set by polycrystalline designs. MgxCd1-xTe absorber based devices have been demonstrated with open-circuit voltages of up to 1.176 V and a maximum active-area efficiency of 11.2%. A discussion of the various loss mechanisms present within these devices, both optical and electrical, concludes with the presentation of a series of potential design changes meant to address these issues.
ContributorsBecker, Jacob J (Author) / Zhang, Yong-Hang (Thesis advisor) / Bertoni, Mariana (Committee member) / Vasileska, Dragica (Committee member) / Johnson, Shane (Committee member) / Arizona State University (Publisher)
Created2017