Matching Items (39)
129656-Thumbnail Image.png
Description

The objective of this study was to identify physical, social, and intrapersonal cues that were associated with the consumption of sweetened beverages and sweet and salty snacks among adolescents from lower SES neighborhoods. Students were recruited from high schools with a minimum level of 25% free or reduced cost lunches.

The objective of this study was to identify physical, social, and intrapersonal cues that were associated with the consumption of sweetened beverages and sweet and salty snacks among adolescents from lower SES neighborhoods. Students were recruited from high schools with a minimum level of 25% free or reduced cost lunches. Using ecological momentary assessment, participants (N = 158) were trained to answer brief questionnaires on handheld PDA devices: (a) each time they ate or drank, (b) when prompted randomly, and (c) once each evening. Data were collected over 7 days for each participant. Participants reported their location (e.g., school grounds, home), mood, social environment, activities (e.g., watching TV, texting), cravings, food cues (e.g., saw a snack), and food choices. Results showed that having unhealthy snacks or sweet drinks among adolescents was associated with being at school, being with friends, feeling lonely or bored, craving a drink or snack, and being exposed to food cues. Surprisingly, sweet drink consumption was associated with exercising. Watching TV was associated with consuming sweet snacks but not with salty snacks or sweet drinks. These findings identify important environmental and intrapersonal cues to poor snacking choices that may be applied to interventions designed to disrupt these food-related, cue-behavior linked habits.

ContributorsGrenard, Jerry L. (Author) / Stacy, Alan W. (Author) / Shiffman, Saul (Author) / Baraldi, Amanda (Author) / MacKinnon, David (Author) / Lockhart, Ginger (Author) / Kisbu-Sakarya, Yasemin (Author) / Boyle, Sarah (Author) / Beleva, Yuliyana (Author) / Koprowski, Carol (Author) / Ames, Susan L. (Author) / Reynolds, Kim D. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-09-09
128539-Thumbnail Image.png
Description

In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from

In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another, assuming that the former is undesired and the latter is desired. To make our framework practically meaningful, we consider restricted parameter perturbation by imposing two constraints: it must be experimentally realizable and applied only temporarily. We introduce the concept of attractor network, which allows us to formulate a quantifiable controllability framework for nonlinear dynamical networks: a network is more controllable if the attractor network is more strongly connected. We test our control framework using examples from various models of experimental gene regulatory networks and demonstrate the beneficial role of noise in facilitating control.

ContributorsWang, Le-Zhi (Author) / Su, Riqi (Author) / Huang, Zi-Gang (Author) / Wang, Xiao (Author) / Wang, Wen-Xu (Author) / Grebogi, Celso (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-04-14
128546-Thumbnail Image.png
Description

We investigate the emergence of extreme events in interdependent networks. We introduce an inter-layer traffic resource competing mechanism to account for the limited capacity associated with distinct network layers. A striking finding is that, when the number of network layers and/or the overlap among the layers are increased, extreme events

We investigate the emergence of extreme events in interdependent networks. We introduce an inter-layer traffic resource competing mechanism to account for the limited capacity associated with distinct network layers. A striking finding is that, when the number of network layers and/or the overlap among the layers are increased, extreme events can emerge in a cascading manner on a global scale. Asymptotically, there are two stable absorption states: a state free of extreme events and a state of full of extreme events, and the transition between them is abrupt. Our results indicate that internal interactions in the multiplex system can yield qualitatively distinct phenomena associated with extreme events that do not occur for independent network layers. An implication is that, e.g., public resource competitions among different service providers can lead to a higher resource requirement than naively expected. We derive an analytical theory to understand the emergence of global-scale extreme events based on the concept of effective betweenness. We also articulate a cost-effective control scheme through increasing the capacity of very few hubs to suppress the cascading process of extreme events so as to protect the entire multi-layer infrastructure against global-scale breakdown.

ContributorsChen, Yu-Zhong (Author) / Huang, Zi-Gang (Author) / Zhang, Hai-Feng (Author) / Eisenberg, Daniel (Contributor) / Seager, Thomas (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-11-27
128549-Thumbnail Image.png
Description

A remarkable phenomenon in spatiotemporal dynamical systems is chimera state, where the structurally and dynamically identical oscillators in a coupled networked system spontaneously break into two groups, one exhibiting coherent motion and another incoherent. This phenomenon was typically studied in the setting of non-local coupling configurations. We ask what can

A remarkable phenomenon in spatiotemporal dynamical systems is chimera state, where the structurally and dynamically identical oscillators in a coupled networked system spontaneously break into two groups, one exhibiting coherent motion and another incoherent. This phenomenon was typically studied in the setting of non-local coupling configurations. We ask what can happen to chimera states under systematic changes to the network structure when links are removed from the network in an orderly fashion but the local coupling topology remains invariant with respect to an index shift. We find the emergence of multicluster chimera states. Remarkably, as a parameter characterizing the amount of link removal is increased, chimera states of distinct numbers of clusters emerge and persist in different parameter regions. We develop a phenomenological theory, based on enhanced or reduced interactions among oscillators in different spatial groups, to explain why chimera states of certain numbers of clusters occur in certain parameter regions. The theoretical prediction agrees well with numerics.

ContributorsYao, Nan (Author) / Huang, Zi-Gang (Author) / Grebogi, Celso (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-09-09
128554-Thumbnail Image.png
Description

Successful identification of directed dynamical influence in complex systems is relevant to significant problems of current interest. Traditional methods based on Granger causality and transfer entropy have issues such as difficulty with nonlinearity and large data requirement. Recently a framework based on nonlinear dynamical analysis was proposed to overcome these

Successful identification of directed dynamical influence in complex systems is relevant to significant problems of current interest. Traditional methods based on Granger causality and transfer entropy have issues such as difficulty with nonlinearity and large data requirement. Recently a framework based on nonlinear dynamical analysis was proposed to overcome these difficulties. We find, surprisingly, that noise can counterintuitively enhance the detectability of directed dynamical influence. In fact, intentionally injecting a proper amount of asymmetric noise into the available time series has the unexpected benefit of dramatically increasing confidence in ascertaining the directed dynamical influence in the underlying system. This result is established based on both real data and model time series from nonlinear ecosystems. We develop a physical understanding of the beneficial role of noise in enhancing detection of directed dynamical influence.

ContributorsJiang, Junjie (Author) / Huang, Zi-Gang (Author) / Huang, Liang (Author) / Liu, Huan (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-04-12
129460-Thumbnail Image.png
Description

Online social networks have become increasingly ubiquitous and understanding their structural, dynamical, and scaling properties not only is of fundamental interest but also has a broad range of applications. Such networks can be extremely dynamic, generated almost instantaneously by, for example, breaking-news items. We investigate a common class of online

Online social networks have become increasingly ubiquitous and understanding their structural, dynamical, and scaling properties not only is of fundamental interest but also has a broad range of applications. Such networks can be extremely dynamic, generated almost instantaneously by, for example, breaking-news items. We investigate a common class of online social networks, the user-user retweeting networks, by analyzing the empirical data collected from Sina Weibo (a massive twitter-like microblogging social network in China) with respect to the topic of the 2011 Japan earthquake. We uncover a number of algebraic scaling relations governing the growth and structure of the network and develop a probabilistic model that captures the basic dynamical features of the system. The model is capable of reproducing all the empirical results. Our analysis not only reveals the basic mechanisms underlying the dynamics of the retweeting networks, but also provides general insights into the control of information spreading on such networks.

ContributorsWang, Le-Zhi (Author) / Huang, Zi-Gang (Author) / Rong, Zhi-Hai (Author) / Wang, Xiao-Fan (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-11-07
129233-Thumbnail Image.png
Description

Most previous works on complete synchronization of chaotic oscillators focused on the one-channel interaction scheme where the oscillators are coupled through only one variable or a symmetric set of variables. Using the standard framework of master-stability function (MSF), we investigate the emergence of complex synchronization behaviors under all possible configurations

Most previous works on complete synchronization of chaotic oscillators focused on the one-channel interaction scheme where the oscillators are coupled through only one variable or a symmetric set of variables. Using the standard framework of master-stability function (MSF), we investigate the emergence of complex synchronization behaviors under all possible configurations of two-channel coupling, which include, for example, all possible cross coupling schemes among the dynamical variables. Utilizing the classic Rössler and Lorenz oscillators, we find a rich variety of synchronization phenomena not present in any previously extensively studied, single-channel coupling configurations. For example, in many cases two coupling channels can enhance or even generate synchronization where there is only weak or no synchronization under only one coupling channel, which has been verified in a coupled neuron system. There are also cases where the oscillators are originally synchronized under one coupling channel, but an additional synchronizable coupling channel can, however, destroy synchronization. Direct numerical simulations of actual synchronization dynamics verify the MSF-based predictions. Our extensive computation and heuristic analysis provide an atlas for synchronization of chaotic oscillators coupled through two channels, which can be used as a systematic reference to facilitate further research in this area.

ContributorsYang, Wenchao (Author) / Huang, Zi-Gang (Author) / Wang, Xingang (Author) / Huang, Liang (Author) / Yang, Lei (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-18
128235-Thumbnail Image.png
Description

Objective: Survival time is an important type of outcome variable in treatment research. Currently, limited guidance is available regarding performing mediation analyses with survival outcomes, which generally do not have normally distributed errors, and contain unobserved (censored) events. We present considerations for choosing an approach, using a comparison of semi-parametric

Objective: Survival time is an important type of outcome variable in treatment research. Currently, limited guidance is available regarding performing mediation analyses with survival outcomes, which generally do not have normally distributed errors, and contain unobserved (censored) events. We present considerations for choosing an approach, using a comparison of semi-parametric proportional hazards (PH) and fully parametric accelerated failure time (AFT) approaches for illustration.

Method: We compare PH and AFT models and procedures in their integration into mediation models and review their ability to produce coefficients that estimate causal effects. Using simulation studies modeling Weibull-distributed survival times, we compare statistical properties of mediation analyses incorporating PH and AFT approaches (employing SAS procedures PHREG and LIFEREG, respectively) under varied data conditions, some including censoring. A simulated data set illustrates the findings.

Results: AFT models integrate more easily than PH models into mediation models. Furthermore, mediation analyses incorporating LIFEREG produce coefficients that can estimate causal effects, and demonstrate superior statistical properties. Censoring introduces bias in the coefficient estimate representing the treatment effect on outcome—underestimation in LIFEREG, and overestimation in PHREG. With LIFEREG, this bias can be addressed using an alternative estimate obtained from combining other coefficients, whereas this is not possible with PHREG.

Conclusions: When Weibull assumptions are not violated, there are compelling advantages to using LIFEREG over PHREG for mediation analyses involving survival-time outcomes. Irrespective of the procedures used, the interpretation of coefficients, effects of censoring on coefficient estimates, and statistical properties should be taken into account when reporting results.

ContributorsGelfand, Lois A. (Author) / MacKinnon, David (Author) / DeRubeis, Robert J. (Author) / Baraldi, Amanda N. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-03-30
128195-Thumbnail Image.png
Description

This randomized prospective trial aimed to assess the feasibility and efficacy of a team-based worksite health and safety intervention for law enforcement personnel. Four-hundred and eight subjects were enrolled and half were randomized to meet for weekly, peer-led sessions delivered from a scripted team-based health and safety curriculum. Curriculum addressed:

This randomized prospective trial aimed to assess the feasibility and efficacy of a team-based worksite health and safety intervention for law enforcement personnel. Four-hundred and eight subjects were enrolled and half were randomized to meet for weekly, peer-led sessions delivered from a scripted team-based health and safety curriculum. Curriculum addressed: exercise, nutrition, stress, sleep, body weight, injury, and other unhealthy lifestyle behaviors such as smoking and heavy alcohol use. Health and safety questionnaires administered before and after the intervention found significant improvements for increased fruit and vegetable consumption, overall healthy eating, increased sleep quantity and sleep quality, and reduced personal stress.

ContributorsKuehl, Kerry S. (Author) / Elliot, Diane L. (Author) / Goldberg, Linn (Author) / MacKinnon, David (Author) / Vila, Bryan J. (Author) / Smith, Jennifer (Author) / Miocevic, Milica (Author) / O'Rourke, Holly (Author) / Valente, Matthew (Author) / DeFrancesco, Carol (Author) / Sleigh, Adriana (Author) / McGinnis, Wendy (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-05-08