Matching Items (56)
128769-Thumbnail Image.png
Description

Theory suggests that human behavior has implications for disease spread. We examine the hypothesis that individuals engage in voluntary defensive behavior during an epidemic. We estimate the number of passengers missing previously purchased flights as a function of concern for swine flu or A/H1N1 influenza using 1.7 million detailed flight

Theory suggests that human behavior has implications for disease spread. We examine the hypothesis that individuals engage in voluntary defensive behavior during an epidemic. We estimate the number of passengers missing previously purchased flights as a function of concern for swine flu or A/H1N1 influenza using 1.7 million detailed flight records, Google Trends, and the World Health Organization's FluNet data. We estimate that concern over “swine flu,” as measured by Google Trends, accounted for 0.34% of missed flights during the epidemic. The Google Trends data correlates strongly with media attention, but poorly (at times negatively) with reported cases in FluNet. Passengers show no response to reported cases. Passengers skipping their purchased trips forwent at least $50 M in travel related benefits. Responding to actual cases would have cut this estimate in half. Thus, people appear to respond to an epidemic by voluntarily engaging in self-protection behavior, but this behavior may not be responsive to objective measures of risk. Clearer risk communication could substantially reduce epidemic costs. People undertaking costly risk reduction behavior, for example, forgoing nonrefundable flights, suggests they may also make less costly behavior adjustments to avoid infection. Accounting for defensive behaviors may be important for forecasting epidemics, but linking behavior with epidemics likely requires consideration of risk communication.

ContributorsFenichel, Eli P. (Author) / Kuminoff, Nicolai (Author) / Chowell-Puente, Gerardo (Author) / W.P. Carey School of Business (Contributor)
Created2013-03-20
128411-Thumbnail Image.png
Description

Background: Extreme heat is a public health challenge. The scarcity of directly comparable studies on the association of heat with morbidity and mortality and the inconsistent identification of threshold temperatures for severe impacts hampers the development of comprehensive strategies aimed at reducing adverse heat-health events.

Objectives: This quantitative study was designed

Background: Extreme heat is a public health challenge. The scarcity of directly comparable studies on the association of heat with morbidity and mortality and the inconsistent identification of threshold temperatures for severe impacts hampers the development of comprehensive strategies aimed at reducing adverse heat-health events.

Objectives: This quantitative study was designed to link temperature with mortality and morbidity events in Maricopa County, Arizona, USA, with a focus on the summer season.
Methods: Using Poisson regression models that controlled for temporal confounders, we assessed daily temperature–health associations for a suite of mortality and morbidity events, diagnoses, and temperature metrics. Minimum risk temperatures, increasing risk temperatures, and excess risk temperatures were statistically identified to represent different “trigger points” at which heat-health intervention measures might be activated.

Results: We found significant and consistent associations of high environmental temperature with all-cause mortality, cardiovascular mortality, heat-related mortality, and mortality resulting from conditions that are consequences of heat and dehydration. Hospitalizations and emergency department visits due to heat-related conditions and conditions associated with consequences of heat and dehydration were also strongly associated with high temperatures, and there were several times more of those events than there were deaths. For each temperature metric, we observed large contrasts in trigger points (up to 22°C) across multiple health events and diagnoses.

Conclusion: Consideration of multiple health events and diagnoses together with a comprehensive approach to identifying threshold temperatures revealed large differences in trigger points for possible interventions related to heat. Providing an array of heat trigger points applicable for different end-users may improve the public health response to a problem that is projected to worsen in the coming decades.

Created2015-07-28
129645-Thumbnail Image.png
Description

Methodologists have developed mediation analysis techniques for a broad range of substantive applications, yet methods for estimating mediating mechanisms with missing data have been understudied. This study outlined a general Bayesian missing data handling approach that can accommodate mediation analyses with any number of manifest variables. Computer simulation studies showed

Methodologists have developed mediation analysis techniques for a broad range of substantive applications, yet methods for estimating mediating mechanisms with missing data have been understudied. This study outlined a general Bayesian missing data handling approach that can accommodate mediation analyses with any number of manifest variables. Computer simulation studies showed that the Bayesian approach produced frequentist coverage rates and power estimates that were comparable to those of maximum likelihood with the bias-corrected bootstrap. We share an SAS macro that implements Bayesian estimation and use 2 data analysis examples to demonstrate its use.

ContributorsEnders, Craig (Author) / Fairchild, Amanda J. (Author) / MacKinnon, David (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013
129656-Thumbnail Image.png
Description

The objective of this study was to identify physical, social, and intrapersonal cues that were associated with the consumption of sweetened beverages and sweet and salty snacks among adolescents from lower SES neighborhoods. Students were recruited from high schools with a minimum level of 25% free or reduced cost lunches.

The objective of this study was to identify physical, social, and intrapersonal cues that were associated with the consumption of sweetened beverages and sweet and salty snacks among adolescents from lower SES neighborhoods. Students were recruited from high schools with a minimum level of 25% free or reduced cost lunches. Using ecological momentary assessment, participants (N = 158) were trained to answer brief questionnaires on handheld PDA devices: (a) each time they ate or drank, (b) when prompted randomly, and (c) once each evening. Data were collected over 7 days for each participant. Participants reported their location (e.g., school grounds, home), mood, social environment, activities (e.g., watching TV, texting), cravings, food cues (e.g., saw a snack), and food choices. Results showed that having unhealthy snacks or sweet drinks among adolescents was associated with being at school, being with friends, feeling lonely or bored, craving a drink or snack, and being exposed to food cues. Surprisingly, sweet drink consumption was associated with exercising. Watching TV was associated with consuming sweet snacks but not with salty snacks or sweet drinks. These findings identify important environmental and intrapersonal cues to poor snacking choices that may be applied to interventions designed to disrupt these food-related, cue-behavior linked habits.

ContributorsGrenard, Jerry L. (Author) / Stacy, Alan W. (Author) / Shiffman, Saul (Author) / Baraldi, Amanda (Author) / MacKinnon, David (Author) / Lockhart, Ginger (Author) / Kisbu-Sakarya, Yasemin (Author) / Boyle, Sarah (Author) / Beleva, Yuliyana (Author) / Koprowski, Carol (Author) / Ames, Susan L. (Author) / Reynolds, Kim D. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-09-09
128055-Thumbnail Image.png
Description

Community associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has become a major cause of skin and soft tissue infections (SSTIs) in the US. We developed an age-structured compartmental model to study the spread of CA-MRSA at the population level and assess the effect of control intervention strategies. We used Monte-Carlo Markov Chain

Community associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has become a major cause of skin and soft tissue infections (SSTIs) in the US. We developed an age-structured compartmental model to study the spread of CA-MRSA at the population level and assess the effect of control intervention strategies. We used Monte-Carlo Markov Chain (MCMC) techniques to parameterize our model using monthly time series data on SSTIs incidence in children (≤19 years) during January 2004 -December 2006 in Maricopa County, Arizona. Our model-based forecast for the period January 2007–December 2008 also provided a good fit to data. We also carried out an uncertainty and sensitivity analysis on the control reproduction number, Rc which we estimated at 1.3 (95% CI [1.2,1.4]) based on the model fit to data. Using our calibrated model, we evaluated the effect of typical intervention strategies namely reducing the contact rate of infected individuals owing to awareness of infection and decolonization strategies targeting symptomatic infected individuals on both and the long-term disease dynamics. We also evaluated the impact of hypothetical decolonization strategies targeting asymptomatic colonized individuals. We found that strategies focused on infected individuals were not capable of achieving disease control when implemented alone or in combination. In contrast, our results suggest that decolonization strategies targeting the pediatric population colonized with CA-MRSA have the potential of achieving disease elimination.

Created2013-11-21
128628-Thumbnail Image.png
Description

Carefully calibrated transmission models have the potential to guide public health officials on the nature and scale of the interventions required to control epidemics. In the context of the ongoing Ebola virus disease (EVD) epidemic in Liberia, Drake and colleagues, in this issue of PLOS Biology, employed an elegant modeling

Carefully calibrated transmission models have the potential to guide public health officials on the nature and scale of the interventions required to control epidemics. In the context of the ongoing Ebola virus disease (EVD) epidemic in Liberia, Drake and colleagues, in this issue of PLOS Biology, employed an elegant modeling approach to capture the distributions of the number of secondary cases that arise in the community and health care settings in the context of changing population behaviors and increasing hospital capacity. Their findings underscore the role of increasing the rate of safe burials and the fractions of infectious individuals who seek hospitalization together with hospital capacity to achieve epidemic control. However, further modeling efforts of EVD transmission and control in West Africa should utilize the spatial-temporal patterns of spread in the region by incorporating spatial heterogeneity in the transmission process. Detailed datasets are urgently needed to characterize temporal changes in population behaviors, contact networks at different spatial scales, population mobility patterns, adherence to infection control measures in hospital settings, and hospitalization and reporting rates.

Created2015-01-21
128632-Thumbnail Image.png
Description

Background: Ebola virus disease (EVD) has generated a large epidemic in West Africa since December 2013. This mini-review is aimed to clarify and illustrate different theoretical concepts of infectiousness in order to compare the infectiousness across different communicable diseases including EVD.

Methods: We employed a transmission model that rests on the

Background: Ebola virus disease (EVD) has generated a large epidemic in West Africa since December 2013. This mini-review is aimed to clarify and illustrate different theoretical concepts of infectiousness in order to compare the infectiousness across different communicable diseases including EVD.

Methods: We employed a transmission model that rests on the renewal process in order to clarify theoretical concepts on infectiousness, namely the basic reproduction number, R0, which measures the infectiousness per generation of cases, the force of infection (i.e. the hazard rate of infection), the intrinsic growth rate (i.e. infectiousness per unit time) and the per-contact probability of infection (i.e. infectiousness per effective contact).

Results: Whereas R0 of EVD is similar to that of influenza, the growth rate (i.e. the measure of infectiousness per unit time) for EVD was shown to be comparatively lower than that for influenza. Moreover, EVD and influenza differ in mode of transmission whereby the probability of transmission per contact is lower for EVD compared to that of influenza.

Conclusions: The slow spread of EVD associated with the need for physical contact with body fluids supports social distancing measures including contact tracing and case isolation. Descriptions and interpretations of different variables quantifying infectiousness need to be used clearly and objectively in the scientific community and for risk communication.

Created2015-01-06
128512-Thumbnail Image.png
Description

The ongoing Zika virus (ZIKV) epidemic in the Americas poses a major global public health emergency. While ZIKV is transmitted from human to human by bites of Aedes mosquitoes, recent evidence indicates that ZIKV can also be transmitted via sexual contact with cases of sexually transmitted ZIKV reported in Argentina,

The ongoing Zika virus (ZIKV) epidemic in the Americas poses a major global public health emergency. While ZIKV is transmitted from human to human by bites of Aedes mosquitoes, recent evidence indicates that ZIKV can also be transmitted via sexual contact with cases of sexually transmitted ZIKV reported in Argentina, Canada, Chile, France, Italy, New Zealand, Peru, Portugal, and the USA. Yet, the role of sexual transmission on the spread and control of ZIKV infection is not well-understood. We introduce a mathematical model to investigate the impact of mosquito-borne and sexual transmission on the spread and control of ZIKV and calibrate the model to ZIKV epidemic data from Brazil, Colombia, and El Salvador. Parameter estimates yielded a basic reproduction number R0 = 2.055 (95% CI: 0.523–6.300), in which the percentage contribution of sexual transmission is 3.044% (95% CI: 0.123–45.73). Our sensitivity analyses indicate that R0 is most sensitive to the biting rate and mortality rate of mosquitoes while sexual transmission increases the risk of infection and epidemic size and prolongs the outbreak. Prevention and control efforts against ZIKV should target both the mosquito-borne and sexual transmission routes.

ContributorsGao, Daozhou (Author) / Lou, Yijun (Author) / He, Daihai (Author) / Porco, Travis C. (Author) / Kuang, Yang (Author) / Chowell-Puente, Gerardo (Author) / Ruan, Shigui (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-06-17
128753-Thumbnail Image.png
Description

Background: Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne infectious disease, is one of the most serious public health threats in China. Increasing our understanding of the spatial and temporal patterns of HFRS infections could guide local prevention and control strategies.

Methodology/Principal Findings: We employed statistical models to analyze HFRS case data together

Background: Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne infectious disease, is one of the most serious public health threats in China. Increasing our understanding of the spatial and temporal patterns of HFRS infections could guide local prevention and control strategies.

Methodology/Principal Findings: We employed statistical models to analyze HFRS case data together with environmental data from the Dongting Lake district during 2005–2010. Specifically, time-specific ecologic niche models (ENMs) were used to quantify and identify risk factors associated with HFRS transmission as well as forecast seasonal variation in risk across geographic areas. Results showed that the Maximum Entropy model provided the best predictive ability (AUC = 0.755). Time-specific Maximum Entropy models showed that the potential risk areas of HFRS significantly varied across seasons. High-risk areas were mainly found in the southeastern and southwestern areas of the Dongting Lake district. Our findings based on models focused on the spring and winter seasons showed particularly good performance. The potential risk areas were smaller in March, May and August compared with those identified for June, July and October to December. Both normalized difference vegetation index (NDVI) and land use types were found to be the dominant risk factors.

Conclusions/Significance: Our findings indicate that time-specific ENMs provide a useful tool to forecast the spatial and temporal risk of HFRS.

ContributorsLiu, Hai-Ning (Author) / Gao, Li-Dong (Author) / Chowell-Puente, Gerardo (Author) / Hu, Shi-Xiong (Author) / Lin, Xiao-Ling (Author) / Li, Xiu-Jun (Author) / Ma, Gui-Hua (Author) / Huang, Ru (Author) / Yang, Hui-Suo (Author) / Tian, Huaiyu (Author) / Xiao, Hong (Author) / Simon M. Levin Mathematical, Computational and Modeling Sciences Center (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2014-09-03
129094-Thumbnail Image.png
Description

Background:
Pandemic influenza is said to 'shift mortality' to younger age groups; but also to spare a subpopulation of the elderly population. Does one of these effects dominate? Might this have important ramifications?

Methods: We estimated age-specific excess mortality rates for all-years for which data were available in the 20th century for Australia,

Background:
Pandemic influenza is said to 'shift mortality' to younger age groups; but also to spare a subpopulation of the elderly population. Does one of these effects dominate? Might this have important ramifications?

Methods: We estimated age-specific excess mortality rates for all-years for which data were available in the 20th century for Australia, Canada, France, Japan, the UK, and the USA for people older than 44 years of age. We modeled variation with age, and standardized estimates to allow direct comparison across age groups and countries. Attack rate data for four pandemics were assembled.

Results: For nearly all seasons, an exponential model characterized mortality data extremely well. For seasons of emergence and a variable number of seasons following, however, a subpopulation above a threshold age invariably enjoyed reduced mortality. 'Immune escape', a stepwise increase in mortality among the oldest elderly, was observed a number of seasons after both the A(H2N2) and A(H3N2) pandemics. The number of seasons from emergence to escape varied by country. For the latter pandemic, mortality rates in four countries increased for younger age groups but only in the season following that of emergence. Adaptation to both emergent viruses was apparent as a progressive decrease in mortality rates, which, with two exceptions, was seen only in younger age groups. Pandemic attack rate variation with age was estimated to be similar across four pandemics with very different mortality impact.

Conclusions: In all influenza pandemics of the 20th century, emergent viruses resembled those that had circulated previously within the lifespan of then-living people. Such individuals were relatively immune to the emergent strain, but this immunity waned with mutation of the emergent virus. An immune subpopulation complicates and may invalidate vaccine trials. Pandemic influenza does not 'shift' mortality to younger age groups; rather, the mortality level is reset by the virulence of the emerging virus and is moderated by immunity of past experience. In this study, we found that after immune escape, older age groups showed no further mortality reduction, despite their being the principal target of conventional influenza vaccines. Vaccines incorporating variants of pandemic viruses seem to provide little benefit to those previously immune. If attack rates truly are similar across pandemics, it must be the case that immunity to the pandemic virus does not prevent infection, but only mitigates the consequences.

Created2012-12-12