Matching Items (47)
127891-Thumbnail Image.png
Description

Inbreeding in hermaphroditic plants can occur through two different mechanisms: biparental inbreeding, when a plant mates with a related individual, or self-fertilization, when a plant mates with itself. To avoid inbreeding, many hermaphroditic plants have evolved self-incompatibility (SI) systems which prevent or limit self-fertilization. One particular SI system—homomorphic SI—can also

Inbreeding in hermaphroditic plants can occur through two different mechanisms: biparental inbreeding, when a plant mates with a related individual, or self-fertilization, when a plant mates with itself. To avoid inbreeding, many hermaphroditic plants have evolved self-incompatibility (SI) systems which prevent or limit self-fertilization. One particular SI system—homomorphic SI—can also reduce biparental inbreeding. Homomorphic SI is found in many angiosperm species, and it is often assumed that the additional benefit of reduced biparental inbreeding may be a factor in the success of this SI system. To test this assumption, we developed a spatially-explicit, individual-based simulation of plant populations that displayed three different types of homomorphic SI. We measured the total level of inbreeding avoidance by comparing each population to a self-compatible population (NSI), and we measured biparental inbreeding avoidance by comparing to a population of self-incompatible plants that were free to mate with any other individual (PSI).

Because biparental inbreeding is more common when offspring dispersal is limited, we examined the levels of biparental inbreeding over a range of dispersal distances. We also tested whether the introduction of inbreeding depression affected the level of biparental inbreeding avoidance. We found that there was a statistically significant decrease in autozygosity in each of the homomorphic SI populations compared to the PSI population and, as expected, this was more pronounced when seed and pollen dispersal was limited. However, levels of homozygosity and inbreeding depression were not reduced. At low dispersal, homomorphic SI populations also suffered reduced female fecundity and had smaller census population sizes. Overall, our simulations showed that the homomorphic SI systems had little impact on the amount of biparental inbreeding in the population especially when compared to the overall reduction in inbreeding compared to the NSI population. With further study, this observation may have important consequences for research into the origin and evolution of homomorphic self-incompatibility systems.

ContributorsFurstenau, Tara (Author) / Cartwright, Reed (Author) / Biodesign Institute (Contributor)
Created2017-11-24
128008-Thumbnail Image.png
Description

Nasonia, a genus of four closely related parasitoid insect species, is a model system for genetic research. Their haplodiploid genetics (haploid males and diploid females) and interfertile species are advantageous for the genetic analysis of complex traits and the genetic basis of species differences. A fine-scale genomic map is an

Nasonia, a genus of four closely related parasitoid insect species, is a model system for genetic research. Their haplodiploid genetics (haploid males and diploid females) and interfertile species are advantageous for the genetic analysis of complex traits and the genetic basis of species differences. A fine-scale genomic map is an important tool for advancing genetic studies in this system. We developed and used a hybrid genotyping microarray to generate a high-resolution genetic map that covers 79% of the sequenced genome of Nasonia vitripennis. The microarray is based on differential hybridization of species-specific oligos between N. vitripennis and Nasonia giraulti at more than 20,000 markers spanning the Nasonia genome. The map places 729 scaffolds onto the five linkage groups of Nasonia, including locating many smaller scaffolds that would be difficult to map by other means. The microarray was used to characterize 26 segmental introgression lines containing chromosomal regions from one species in the genetic background of another. These segmental introgression lines have been used for rapid screening and mapping of quantitative trait loci involved in species differences. Finally, the microarray is extended to bulk-segregant analysis and genotyping of other Nasonia species combinations. These resources should further expand the usefulness of Nasonia for studies of the genetic basis and architecture of complex traits and speciation.

ContributorsDesjardins, Christopher A. (Author) / Gadau, Juergen (Author) / Lopez, Jacqueline A. (Author) / Niehuis, Oliver (Author) / Avery, Amanda R. (Author) / Loehlin, David W. (Author) / Richards, Stephen (Author) / Colbourne, John K. (Author) / Werren, John H. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-02-01
128617-Thumbnail Image.png
Description

Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and

Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and through the development of new genetic markers that can be used to monitor efforts to reduce malaria transmission. Here we analyze whole-genome data from eight field samples from a region in Cordóba, Colombia where malaria is endemic. We find considerable genetic diversity within this population, a result that contrasts with earlier studies suggesting that P. vivax had limited diversity in the Americas. We also identify a selective sweep around a substitution known to confer resistance to sulphadoxine-pyrimethamine (SP). This is the first observation of a selective sweep for SP resistance in this species. These results indicate that P. vivax has been exposed to SP pressure even when the drug is not in use as a first line treatment for patients afflicted by this parasite. We identify multiple non-synonymous substitutions in three other genes known to be involved with drug resistance in Plasmodium species. Finally, we found extensive microsatellite polymorphisms. Using this information we developed 18 polymorphic and easy to score microsatellite loci that can be used in epidemiological investigations in South America.

ContributorsWinter, David (Author) / Pacheco, Maria Andreina (Author) / Vallejo, Andres F. (Author) / Schwartz, Rachel (Author) / Arevalo-Herrera, Myriam (Author) / Herrera, Socrates (Author) / Cartwright, Reed (Author) / Escalante, Ananias (Author) / Biodesign Institute (Contributor)
Created2015-12-28
128470-Thumbnail Image.png
Description

In this study, we present a novel methodology to infer indel parameters from multiple sequence alignments (MSAs) based on simulations. Our algorithm searches for the set of evolutionary parameters describing indel dynamics which best fits a given input MSA. In each step of the search, we use parametric bootstraps and

In this study, we present a novel methodology to infer indel parameters from multiple sequence alignments (MSAs) based on simulations. Our algorithm searches for the set of evolutionary parameters describing indel dynamics which best fits a given input MSA. In each step of the search, we use parametric bootstraps and the Mahalanobis distance to estimate how well a proposed set of parameters fits input data. Using simulations, we demonstrate that our methodology can accurately infer the indel parameters for a large variety of plausible settings. Moreover, using our methodology, we show that indel parameters substantially vary between three genomic data sets: Mammals, bacteria, and retroviruses. Finally, we demonstrate how our methodology can be used to simulate MSAs based on indel parameters inferred from real data sets.

ContributorsLevy Karin, Eli (Author) / Rabin, Avigayel (Author) / Ashkenazy, Haim (Author) / Shkedy, Dafna (Author) / Avram, Oren (Author) / Cartwright, Reed (Author) / Pupko, Tal (Author) / Biodesign Institute (Contributor)
Created2015-11-03
128472-Thumbnail Image.png
Description

A central goal of biology is to uncover the genetic basis for the origin of new phenotypes. A particularly effective approach is to examine the genomic architecture of species that have secondarily lost a phenotype with respect to their close relatives. In the eusocial Hymenoptera, queens and workers have divergent

A central goal of biology is to uncover the genetic basis for the origin of new phenotypes. A particularly effective approach is to examine the genomic architecture of species that have secondarily lost a phenotype with respect to their close relatives. In the eusocial Hymenoptera, queens and workers have divergent phenotypes that may be produced via either expression of alternative sets of caste-specific genes and pathways or differences in expression patterns of a shared set of multifunctional genes. To distinguish between these two hypotheses, we investigated how secondary loss of the worker phenotype in workerless ant social parasites impacted genome evolution across two independent origins of social parasitism in the ant genera Pogonomyrmex and Vollenhovia. We sequenced the genomes of three social parasites and their most-closely related eusocial host species and compared gene losses in social parasites with gene expression differences between host queens and workers. Virtually all annotated genes were expressed to some degree in both castes of the host, with most shifting in queen-worker bias across developmental stages. As a result, despite >1 My of divergence from the last common ancestor that had workers, the social parasites showed strikingly little evidence of gene loss, damaging mutations, or shifts in selection regime resulting from loss of the worker caste. This suggests that regulatory changes within a multifunctional genome, rather than sequence differences, have played a predominant role in the evolution of social parasitism, and perhaps also in the many gains and losses of phenotypes in the social insects.

ContributorsSmith, Chris R. (Author) / Helms Cahan, Sara (Author) / Kemena, Carsten (Author) / Brady, Sean G. (Author) / Yang, Wei (Author) / Bornberg-Bauer, Erich (Author) / Eriksson, Ti (Author) / Gadau, Juergen (Author) / Helmkampf, Martin (Author) / Gotzek, Dietrich (Author) / Okamoto Miyakawa, Misato (Author) / Suarez, Andrew V. (Author) / Mikheyev, Alexander (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-07-29
128447-Thumbnail Image.png
Description

Mathematical models of infectious diseases are a valuable tool in understanding the mechanisms and patterns of disease transmission. It is, however, a difficult subject to teach, requiring both mathematical expertise and extensive subject-matter knowledge of a variety of disease systems. In this article, we explore several uses of zombie epidemics

Mathematical models of infectious diseases are a valuable tool in understanding the mechanisms and patterns of disease transmission. It is, however, a difficult subject to teach, requiring both mathematical expertise and extensive subject-matter knowledge of a variety of disease systems. In this article, we explore several uses of zombie epidemics to make mathematical modeling and infectious disease epidemiology more accessible to public health professionals, students, and the general public. We further introduce a web-based simulation, White Zed (http://cartwrig.ht/apps/whitezed/), that can be deployed in classrooms to allow students to explore models before implementing them. In our experience, zombie epidemics are familiar, approachable, flexible, and an ideal way to introduce basic concepts of infectious disease epidemiology.

ContributorsLofgren, Eric T. (Author) / Collins, Kristy M. (Author) / Smith, Tara C. (Author) / Cartwright, Reed (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-03
Description

Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality

Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats.

Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits.

Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.

ContributorsSadd, Ben M. (Author) / Barribeau, Seth M. (Author) / Bloch, Guy (Author) / de Graaf, Dirk C. (Author) / Dearden, Peter (Author) / Elsik, Christine G. (Author) / Gadau, Juergen (Author) / Grimmelikhuijzen, Cornelis J. P. (Author) / Hasselmann, Martin (Author) / Lozier, Jeffrey D. (Author) / Robertson, Hugh M. (Author) / Smagghe, Guy (Author) / Stolle, Eckart (Author) / Van Vaerenbergh, Matthias (Author) / Waterhouse, Robert M. (Author) / Bornberg-Bauer, Erich (Author) / Klasberg, Steffen (Author) / Bennett, Anna K. (Author) / Camara, Francisco (Author) / Guigo, Roderic (Author) / Hoff, Katharina (Author) / Mariotti, Marco (Author) / Munoz-Torres, Monica (Author) / Murphy, Terence (Author) / Santesmasses, Didac (Author) / Amdam, Gro (Author) / Beckers, Matthew (Author) / Beye, Martin (Author) / Biewer, Matthias (Author) / Bitondi, Marcia MG (Author) / Blaxter, Mark L. (Author) / Bourke, Andrew FG (Author) / Brown, Mark JF (Author) / Buechel, Severine D. (Author) / Cameron, Rossanah (Author) / Cappelle, Kaat (Author) / Carolan, James C. (Author) / Christiaens, Olivier (Author) / Ciborowski, Kate L. (Author) / Clarke, David F. (Author) / Colgan, Thomas J. (Author) / Collins, David H. (Author) / Cridge, Andrew G. (Author) / Dalmay, Tamas (Author) / Dreier, Stephanie (Author) / du Plessis, Louis (Author) / Duncan, Elizabeth (Author) / Erler, Silvio (Author) / Evans, Jay (Author) / Falcon, Talgo (Author) / Flores, Kevin (Author) / Freitas, Flavia CP (Author) / Fuchikawa, Taro (Author) / Gempe, Tanja (Author) / Hartfelder, Klaus (Author) / Hauser, Frank (Author) / Helbing, Sophie (Author) / Humann, Fernanda (Author) / Irvine, Frano (Author) / Jermiin, Lars S (Author) / Johnson, Claire E. (Author) / Johnson, Reed M (Author) / Jones, Andrew K. (Author) / Kadowaki, Tatsuhiko (Author) / Kidner, Jonathan H. (Author) / Koch, Vasco (Author) / Kohler, Arian (Author) / Kraus, F. Bernhard (Author) / Lattorff, H. Michael G. (Author) / Leask, Megan (Author) / Lockett, Gabrielle A. (Author) / Mallon, Eamonn B. (Author) / Marco Antonio, David S. (Author) / Marxer, Monika (Author) / Meeus, Ivan (Author) / Moritz, Robin FA (Author) / Nair, Ajay (Author) / Napflin, Kathrin (Author) / Nissen, Inga (Author) / Niu, Jinzhi (Author) / Nunes, Francis MF (Author) / Oakeshott, John G. (Author) / Osborne, Amy (Author) / Otte, Marianne (Author) / Pinheiro, Daniel G. (Author) / Rossie, Nina (Author) / Rueppell, Olav (Author) / Santos, Carolina G (Author) / Schmid-Hempel, Regula (Author) / Schmitt, Bjorn D. (Author) / Schulte, Christina (Author) / Simoes, Zila LP (Author) / Soares, Michelle PM (Author) / Swevers, Luc (Author) / Winnebeck, Eva C. (Author) / Wolschin, Florian (Author) / Yu, Na (Author) / Zdobnov, Evgeny M (Author) / Aqrawi, Peshtewani K (Author) / Blakenburg, Kerstin P (Author) / Coyle, Marcus (Author) / Francisco, Liezl (Author) / Hernandez, Alvaro G. (Author) / Holder, Michael (Author) / Hudson, Matthew E. (Author) / Jackson, LaRonda (Author) / Jayaseelan, Joy (Author) / Joshi, Vandita (Author) / Kovar, Christie (Author) / Lee, Sandra L. (Author) / Mata, Robert (Author) / Mathew, Tittu (Author) / Newsham, Irene F. (Author) / Ngo, Robin (Author) / Okwuonu, Geoffrey (Author) / Pham, Christopher (Author) / Pu, Ling-Ling (Author) / Saada, Nehad (Author) / Santibanez, Jireh (Author) / Simmons, DeNard (Author) / Thornton, Rebecca (Author) / Venkat, Aarti (Author) / Walden, Kimberly KO (Author) / Wu, Yuan-Qing (Author) / Debyser, Griet (Author) / Devreese, Bart (Author) / Asher, Claire (Author) / Blommaert, Julie (Author) / Chipman, Ariel D. (Author) / Chittka, Lars (Author) / Fouks, Bertrand (Author) / Liu, Jisheng (Author) / O'Neill, Meaghan P (Author) / Sumner, Seirian (Author) / Puiu, Daniela (Author) / Qu, Jiaxin (Author) / Salzberg, Steven L (Author) / Scherer, Steven E (Author) / Muzny, Donna M. (Author) / Richards, Stephen (Author) / Robinson, Gene E (Author) / Gibbs, Richard A. (Author) / Schmid-Hempel, Paul (Author) / Worley, Kim C (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-04-24