Matching Items (12)
Filtering by

Clear all filters

151184-Thumbnail Image.png
Description
Here I present a phylogeographic study of at least six reproductively isolated lineages of harvester ants within the Pogonomyrmex barbatus and P. rugosus species group. The genetic and geographic relationships within this clade are complex: four of the identified lineages are divided into two pairs, and each pair has evolved

Here I present a phylogeographic study of at least six reproductively isolated lineages of harvester ants within the Pogonomyrmex barbatus and P. rugosus species group. The genetic and geographic relationships within this clade are complex: four of the identified lineages are divided into two pairs, and each pair has evolved under a mutualistic system that necessitates sympatry. These paired lineages are dependent upon one another because interlineage matings within each pair are the sole source of hybrid F1 workers; these workers build and sustain the colonies, facilitating the production of the reproductive caste, which results solely from intralineage fertilizations. This system of genetic caste determination (GCD) maintains genetic isolation among these closely related lineages, while simultaneously requiring co-expansion and emigration as their distributions have changed over time. Previous studies have also demonstrated that three of the four lineages displaying this unique genetic caste determination phenotype are of hybrid origin. Thus, reconstructing the phylogenetic and geographic history of this group allows us to evaluate past insights and plan future inquiries in a more complete historical biogeographic context. Using mitochondrial DNA sequences sampled across most of the morphospecies' ranges in the U.S. and Mexico, I employed several methods of phylogenetic and DNA sequence analysis, along with comparisons to geological, biogeographic, and phylogeographic studies throughout the sampled regions. These analyses on Pogonomyrmex harvester ants reveal a complex pattern of vicariance and dispersal that is largely concordant with models of late Miocene, Pliocene, and Pleistocene range shifts among various arid-adapted taxa in North America.
ContributorsMott, Brendon (Author) / Gadau, Juergen (Thesis advisor) / Fewell, Jennifer (Committee member) / Anderson, Kirk (Committee member) / Arizona State University (Publisher)
Created2012
148475-Thumbnail Image.png
Description

As the world’s population exponentially grows, more food production is required. This increasing food production currently has led to the un-sustainable production of chemical fertilizers and resultant overuse. A more sustainable option to enhance food production could be the use of fertilizer derived from food waste. To address this, we

As the world’s population exponentially grows, more food production is required. This increasing food production currently has led to the un-sustainable production of chemical fertilizers and resultant overuse. A more sustainable option to enhance food production could be the use of fertilizer derived from food waste. To address this, we investigated the possibility of utilizing a fertilizer derived from food waste to grow hydroponic vegetables. Arugula (Eruca sativa) ‘Slow Bolt’ and lettuce (Lactuca sativa) ‘Cherokee’ and ‘Rex’ were cultivated using indoor deep-flow hydroponic systems at 23 ºC under a photosynthetic photon flux density of 170 µmol∙m−2∙s−1 with an 18-hour photoperiod. Plant nutrient solutions were provided by food waste fertilizer or commercial 15:5:20 NPK fertilizer at the identical electrical conductivity (EC) of 2.3 mS·cm–1. At the EC of 2.3 mS·cm–1, chemical fertilizer contained 150 ppm N, 50 ppm P, and 200 ppm K, while food waste fertilizer had 60 ppm N, 26 ppm P, and 119 ppm K. Four weeks after the nutrient treatments were implemented, compared to plants grown with chemical fertilizer, lettuce ‘Rex’ grown with food waste fertilizer had four less leaves, 27.1% shorter leaves, 68.2% and 23.1% less shoot and root fresh weight, respectively. Lettuce ‘Cherokee’ and arugula grown with food waste fertilizer followed a similar trend with fresh shoot weights that were 80.1% and 95.6% less compared to the chemical fertilizer, respectively. In general, the magnitude of reduction in the plant growth was greatest in arugula. These results suggest that both fertilizers were able to successfully grow lettuce and arugula, although the reduced plant growth with the food waste fertilizer in our study is likely from a lower concentration of nutrients when we considered EC as an indicator of nutrient concentration equivalency of the two fertilizer types.

ContributorsCherry, Hannah Nichole (Author) / Park, Yujin (Thesis director) / Penton, Ryan (Committee member) / Chen, Zhihao (Committee member) / Environmental and Resource Management (Contributor, Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
My thesis/creative project is a series of videos, supplemented by a paper documenting all the research. The project focuses on domestic and feral cats through the viewpoint of the “warrior cats” book series. The use of a particular fandom as a vehicle for science communication is a unique platform for

My thesis/creative project is a series of videos, supplemented by a paper documenting all the research. The project focuses on domestic and feral cats through the viewpoint of the “warrior cats” book series. The use of a particular fandom as a vehicle for science communication is a unique platform for use as a thesis/creative project. The narrated videos are made with the intention of being presented on YouTube or a similar viewing platform to an audience that is already familiar with the book series. The videos would fit on the site as a form of educational film known as video essays. The videos cover a range of topics to relate this book series to real situations with domestic animals, particularly cats, and wildlife. Each video is around ten to twenty minutes long and presented as episodes in a series.
The objective of my thesis project is to help bridge the gap between entertainment and science. I grew up reading the warrior cats, and I assume I was similar to many other children and young teens who did not understand domestic cats or ecology enough to question anything in the books. I know that much of these books are fictional, but that does not mean that it can’t be analyzed and used as a tool for teaching. The goal is to reach common ground with those people who have an interest in the warrior cats series, and help them understand it in a new light, as well as the world around them. I aim for the takeaway of this series to encourage people to explore the concepts I discuss and consider expanding upon the ideas within the Warriors universe or with their own cats.
ContributorsGarcia, Johnny Nico (Author) / Bateman, Heather (Thesis director) / Meloy, Elizabeth (Committee member) / College of Integrative Sciences and Arts (Contributor, Contributor) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133732-Thumbnail Image.png
Description
As threats to Earth's biodiversity continue to evolve, an effective methodology to predict such threats is crucial to ensure the survival of living species. Organizations like the International Union for Conservation of Nature (IUCN) monitor the Earth's environmental networks to preserve the sanctity of terrestrial and marine life. The IUCN

As threats to Earth's biodiversity continue to evolve, an effective methodology to predict such threats is crucial to ensure the survival of living species. Organizations like the International Union for Conservation of Nature (IUCN) monitor the Earth's environmental networks to preserve the sanctity of terrestrial and marine life. The IUCN Red List of Threatened Species informs the conservation activities of governments as a world standard of species' risks of extinction. However, the IUCN's current methodology is, in some ways, inefficient given the immense volume of Earth's species and the laboriousness of its species' risk classification process. IUCN assessors can take years to classify a species' extinction risk, even as that species continues to decline. Therefore, to supplement the IUCN's classification process and thus bolster conservationist efforts for threatened species, a Random Forest model was constructed, trained on a group of fish species previously classified by the IUCN Red List. This Random Forest model both validates the IUCN Red List's classification method and offers a highly efficient, supplemental classification method for species' extinction risk. In addition, this Random Forest model is applicable to species with deficient data, which the IUCN Red List is otherwise unable to classify, thus engendering conservationist efforts for previously obscure species. Although this Random Forest model is built specifically for the trained fish species (Sparidae), the methodology can and should be extended to additional species.
ContributorsWoodyard, Megan (Author) / Broatch, Jennifer (Thesis director) / Polidoro, Beth (Committee member) / Mancenido, Michelle (Committee member) / School of Humanities, Arts, and Cultural Studies (Contributor) / School of Mathematical and Natural Sciences (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
168609-Thumbnail Image.png
Description
By increasing the mean and variance of environmental temperatures, climate change has caused local extinctions and range shifts of numerous species. However, biologists disagree on which populations and species are most vulnerable to future warming. This debate arises because biologists do not know which physiological processes are most vulnerable to

By increasing the mean and variance of environmental temperatures, climate change has caused local extinctions and range shifts of numerous species. However, biologists disagree on which populations and species are most vulnerable to future warming. This debate arises because biologists do not know which physiological processes are most vulnerable to temperature or how to model these processes in complex environments. Using the South American locust (Schistocerca cancellata) as a model system, my dissertation addressed this debate and explained how climate limits the persistence of locust populations. Locusts of S. cancellata are serious agricultural pests with occasional outbreaks covering up to 4 million km2 over six countries. Because outbreaks are largely driven by climate, understanding how climate limits the persistence of locusts may help predict crop losses in future climates. To achieve this aim, I integrated observational, experimental, and computational approaches. First, I tested a physiological model of heat stress. By measuring the heat tolerance of locusts under different oxygen concentrations, I demonstrated that heat tolerance depends on oxygen supply during the hatchling stage only. Second, I modeled the geographic distribution of locusts using physiological traits. I started by measuring thermal effects on consumption and defecation of field-captured locusts, and I then used these data to model energy gain in current and future climates. My results indicated that incorporating physiological mechanisms can improve the accuracy of models and alter predicted impacts of climate change. Finally, I explored the causes and consequences of intraspecific variation in heat tolerance. After measuring heat tolerance of locusts in different hydration states and developmental stages, I modeled survival in historical microclimates. My models indicated that recent climate change has amplified the risk of overheating for locusts, and this risk depended strongly on shade availability, hydration state, and developmental stage. Therefore, the survival of locusts in future climates will likely depend on their access to shade and water. Overall, my dissertation argues that modeling physiological mechanisms can improve the ability of biologists to predict the impacts of climate change.
ContributorsYoungblood, Jacob (Author) / Angilletta, Michael (Thesis advisor) / Buckley, Lauren (Committee member) / Cease, Arianne (Committee member) / Smith, Brian (Committee member) / Vanden Brooks, John (Committee member) / Arizona State University (Publisher)
Created2022
Description
The use of genetic management in conservation has sparked much debate around the ethical and environmental impacts of the plans. A case study on the conservation of leopard frogs in Arizona was analyzed to better understand the benefits and issues surrounding genetic management plans. The first part of the case

The use of genetic management in conservation has sparked much debate around the ethical and environmental impacts of the plans. A case study on the conservation of leopard frogs in Arizona was analyzed to better understand the benefits and issues surrounding genetic management plans. The first part of the case focuses on the recent management plan for Chiricahua Leopard Frogs implemented by the Arizona Game and Fish Department. The goal of the plan is to better understand the genetic dynamics of the established Chiricahua Leopard Frog populations to develop a more effective management plan. The second part of the case focuses on the Arizona Game and Fish Department’s management of the Northern Leopard Frog. There was little success with the initial breed and release program of the native species, however a nonnative subspecies of Northern Leopard Frog was able to establish a thriving population. This case study exemplifies the many complications with genetic management plans and the importance of careful assessment of options when deciding on a genetic management plan. Despite the complexity of genetic management plans, it is an important method to consider when discussing the conservation of a species.
ContributorsTurpen, Alexa (Author) / Murphree, Julie (Thesis director) / Collins, James (Thesis director) / Owens, Audrey (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / College of Integrative Sciences and Arts (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2024-05
166264-Thumbnail Image.png
Description
The Salt River wild horses are a historic population of unbranded, unclaimed, wild and free-roaming horses, that were born in the wild and merit protection within our National Forest and protection of the Wild Horse and Burro act of 1970. Terms like undomesticated or feral are thrown around in place

The Salt River wild horses are a historic population of unbranded, unclaimed, wild and free-roaming horses, that were born in the wild and merit protection within our National Forest and protection of the Wild Horse and Burro act of 1970. Terms like undomesticated or feral are thrown around in place of “wild”. The past couple of decades or so, there has been an ongoing debate about the current state of the horses on the range. The horses that are along the Salt River, are considered to be state protected and not federally protected, which has sparked a vast discussion on the social, ethical and moral aspects. There has been an overabundance of horses on the range and are causing potential issues to the environment and other farmland. According to the BLM, wild horse and burro populations have a demonstrated ability to grow at 18-20 percent per year. With the widespread and overabundance that is occurring with the horses and burros, it has been said to have a great ecological cost on the rangeland ecosystem by overgrazing native plants, exacerbating invasive establishment and out-competing other ungulates like cattle. Overabundant free-roaming horse and burro populations have large and growing economic and ecological costs for the American public. Without effective management actions, horse and burro populations will double within the next 4-5 years. In this project, with the help of Dr. Julie Murphree, the Salt River Horse Management group and Arizona’s State Liaison for the Department of Agriculture, I conducted various ride-a-longs and conducted my own literature study to further solidify the knowledge I gained when navigating through the Salt River Wild Horse Management group. I can use their data as well as my own observations in the field to catalog their behaviors and look for any signs that would give reason to why this method of population control may or may not be used. I was able to note the horses in their “natural state” which would give me the opportunity to see any behavior changes in various population groups (or otherwise known as Bands). The main objective of this paper is to understand PZP as a population control tool and the effect it has on the Salt River Horses in Arizona.
ContributorsRendon, Chyna (Author) / Murphree, Julie (Thesis director) / Saul, Steven (Committee member) / Barrett, The Honors College (Contributor) / College of Integrative Sciences and Arts (Contributor)
Created2022-05
156201-Thumbnail Image.png
Description
For interspecific mutualisms, the behavior of one partner can influence the fitness of the other, especially in the case of symbiotic mutualisms where partners live in close physical association for much of their lives. Behavioral effects on fitness may be particularly important if either species in these long-term relationships displays

For interspecific mutualisms, the behavior of one partner can influence the fitness of the other, especially in the case of symbiotic mutualisms where partners live in close physical association for much of their lives. Behavioral effects on fitness may be particularly important if either species in these long-term relationships displays personality. Animal personality is defined as repeatable individual differences in behavior, and how correlations among these consistent traits are structured is termed behavioral syndromes. Animal personality has been broadly documented across the animal kingdom but is poorly understood in the context of mutualisms. My dissertation focuses on the structure, causes, and consequences of collective personality in Azteca constructor colonies that live in Cecropia trees, one of the most successful and prominent mutualisms of the neotropics. These pioneer plants provide hollow internodes for nesting and nutrient-rich food bodies; in return, the ants provide protection from herbivores and encroaching vines. I first explored the structure of the behavioral syndrome by testing the consistency and correlation of colony-level behavioral traits under natural conditions in the field. Traits were both consistent within colonies and correlated among colonies revealing a behavioral syndrome along a docile-aggressive axis. Host plants of more active, aggressive colonies had less leaf damage, suggesting a link between a colony personality and host plant health. I then studied how aspects of colony sociometry are intertwined with their host plants by assessing the relationship among plant growth, colony growth, colony structure, ant morphology, and colony personality. Colony personality was independent of host plant measures like tree size, age, volume. Finally, I tested how colony personality influenced by soil nutrients by assessing personality in the field and transferring colonies to plants the greenhouse under different soil nutrient treatments. Personality was correlated with soil nutrients in the field but was not influenced by soil nutrient treatment in the greenhouse. This suggests that soil nutrients interact with other factors in the environment to structure personality. This dissertation demonstrates that colony personality is an ecologically relevant phenomenon and an important consideration for mutualism dynamics.
ContributorsMarting, Peter (Author) / Pratt, Stephen C (Thesis advisor) / Wcislo, William T (Committee member) / Hoelldobler, Bert (Committee member) / Fewell, Jennifer H (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2018
155980-Thumbnail Image.png
Description
An important component of insect social structure is the number of queens that cohabitate in a colony. Queen number is highly variable between and within species. It can begin at colony initiation when often unrelated queens form cooperative social groups, a strategy known as primary polygyny. The non-kin cooperative groups

An important component of insect social structure is the number of queens that cohabitate in a colony. Queen number is highly variable between and within species. It can begin at colony initiation when often unrelated queens form cooperative social groups, a strategy known as primary polygyny. The non-kin cooperative groups formed by primary polygyny have profound effects on the social dynamics and inclusive fitness benefits within a colony. Despite this, the evolution of non-kin queen cooperation has been relatively overlooked in considerations of the evolution of cooperative sociality. To date, studies examining the costs and benefits of primary polygyny have focused primarily on the advantages of multiple queens during colony founding and early growth, but the impact of their presence extends to colony maturity and reproduction.

In this dissertation, I evaluate the ecological drivers and fitness consequences of non-kin queen cooperation, by comparing the reproduction of mature single-queen versus polygynous harvester ant (Pogonomyrmex californicus) colonies in the field. I captured and quantified the total number and biomass of reproductives across multiple mating seasons, comparing between populations that vary in the proportion of single queen versus polygynous colonies, to assess the fitness outcomes of queen cooperation. Colonies in a mainly polygynous site had lower reproductive investment than those in sites with predominantly single-queen colonies. The site dominated by polygyny had higher colony density and displayed evidence of resource limitation, pressures that may drive the evolution of queen cooperation.

I also used microsatellite markers to examine how polygynous queens share worker and reproductive production with nest-mate queens. The majority of queens fairly contribute to worker production and equally share reproductive output. However, there is a low frequency of queens that under-produce workers and over-produce reproductive offspring. This suggests that cheating by reproducing queens is possible, but uncommon. Competitive pressure from neighboring colonies could reduce the success of colonies that contain cheaters and maintain a low frequency of this phenotype in the population.
ContributorsHaney, Brian R (Author) / Fewell, Jennifer H (Thesis advisor) / Cole, Blaine J. (Committee member) / Gadau, Juergen (Committee member) / Hoelldobler, Bert (Committee member) / Rutowski, Ron L (Committee member) / Arizona State University (Publisher)
Created2017
158687-Thumbnail Image.png
Description
Desert ecosystems of the southwest United States are characterized by hot and arid climates, but hibernating bats can be found at high altitudes. The emerging fungal infection, white-nose syndrome, causes mortality in hibernating bat populations across eastern North America and the pathogen is increasingly observed in western regions. However, little

Desert ecosystems of the southwest United States are characterized by hot and arid climates, but hibernating bats can be found at high altitudes. The emerging fungal infection, white-nose syndrome, causes mortality in hibernating bat populations across eastern North America and the pathogen is increasingly observed in western regions. However, little is known about the ecology of hibernating bats in the southwest, which can help predict how these populations may respond to the fungus. My study investigated hibernating bats during two winters (2018-2019/2019-2020) at three caves in northern Arizona to: (1) describe diversity and abundance of hibernating bats using visual internal surveys and photographic documentation, (2) determine the duration of hibernation by recording bat echolocation call sequences outside caves and recording bat activity in caves using visual inspection, and (3) describe environmental conditions where hibernating bats are roosting. Adjacent to bats, I collected temperature and relative humidity, which I converted into absolute humidity. I documented hibernation status (i.e. active vs. not active) and roosting body position (i.e. open, partially hidden, and hidden). Between September 2018 and April 2019, 246 bat observations were recorded across the three caves. The majority of bats were identified as Myotis spp. (45.9\%, n=113), followed by Corynorhinus townsendii (45.5\%, n=112), Parastrellus hesperus (4.8\%, n=12), Eptesicus fuscus (3.6\%, n=9). Between September 2019 and April 2020, I documented a total of 361 bat observations across the three caves. C. townsendii was most prevalent (52.9\%, n=191), followed by the category P. hesperus/Myotis spp. (25.7\%, n=93), Myotis spp. (12.4\%, n=45), P. Hesperus (4.4\%, n=16), E. fuscus (3.6\%, n=13) and Unknown (0.8\%, n=3). Average conditions adjacent to bats were, temperature=12.5ºC, relative humidity=53\%, and absolute humidity=4.9 g/kg. Hibernating bats were never observed in large clusters and the maximum hibernating population size was 24, suggesting low risk for pathogen transmission among bats. Hibernation lasted approximately 120 days, with minimal activity documented inside and outside caves. Hibernating bats in northern Arizona may be at low risk for white-nose syndrome based on population size, hibernation length, roosting behavior, and absolute humidity, but other variables (e.g. temperature) indicate the potential for white-nose syndrome impacts on these populations.
ContributorsMaldonado Perez, Nubia Erandi (Author) / Moore, Marianne S (Thesis advisor) / DeNardo, Dale (Committee member) / Deviche, Pierre (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2020