Matching Items (13)
189337-Thumbnail Image.png
Description
Social norms are unwritten behavioral codes. They direct individual behaviors, facilitate interpersonal coordination and cooperation, and lead to variation among human populations. Understanding how norms are maintained and how they change is critical for understanding human evolutionary psychology, social organization, and cultural change. This dissertation uses a mathematical model and

Social norms are unwritten behavioral codes. They direct individual behaviors, facilitate interpersonal coordination and cooperation, and lead to variation among human populations. Understanding how norms are maintained and how they change is critical for understanding human evolutionary psychology, social organization, and cultural change. This dissertation uses a mathematical model and a field study to answer two questions: First, what factors determine the content and dynamics of a social norm? Second, how do people make decisions in a normative context? The mathematical model finds that contrary to the popular belief that even arbitrary or deleterious social norms can be maintained once established because deviants suffer coordination failures and social sanctions, norms with continuously varying options cannot be maintained by the pressure to do what others do. Instead, continuous norms evolve to the optimum determined by environmental pressure, individual preferences, or cognitive processes. Therefore, the content of norms across human societies may be less historically constrained than previously assumed. The field study shows that unlike what rational choice theory predicts, people in a small-scale subsistence society do not calculate the ecological and social payoffs of different behaviors in a normative context, even when they have the information to do so. Instead, they rely heavily on social information about what others do. This decision-making algorithm, together with mental categorization that ignores small deviations, and cognitive biases that favor the division prescribed by the norm, maintain an ecologically inefficient and widely disliked cooperative surplus division norm in a Derung village, Dizhengdang, in Yunnan, China.
ContributorsYan, Minhua (Author) / Boyd, Robert (Thesis advisor) / Mathew, Sarah (Thesis advisor) / Hruschka, Daniel (Committee member) / Arizona State University (Publisher)
Created2023
157490-Thumbnail Image.png
Description
Two of the defining behaviors associated with the hominin lineage are an increased reliance on tool use and the routine incorporation of animal tissue in the diet. These adaptations have been linked to numerous downstream consequences including key physiological adaptations as well as social and cognitive effects associated with modern

Two of the defining behaviors associated with the hominin lineage are an increased reliance on tool use and the routine incorporation of animal tissue in the diet. These adaptations have been linked to numerous downstream consequences including key physiological adaptations as well as social and cognitive effects associated with modern humans. Thus, a critical issue in human evolution is how to determine when hominins began incorporating significant amounts of meat into their diets. Bone surface modifications (BSM) have long been recognized as a powerful inferential tool in identifying the differential involvement of actors responsible for altering assemblages of bone recovered from both archaeological and paleontological contexts and remain a primary source of direct evidence for butchery activities. Thus, determining the spatiotemporal context of increased carnivory in the hominin lineage relies on the accurate identification of fossil BSM.

Multidecade-long debates over the agents responsible for individual BSM indicate systemic flaws in historical approaches to identification. These debates are in part due to the extreme morphological overlap between BSM produced by certain agents of modification. The primary goal of this dissertation project therefore, is to construct probability models of BSM capable of identifying individual marks with an associated probability of assignment. Using a multivariate Bayesian approach to analyze experimentally-generated BSM data, this dissertation uses two different models, one incorporating both two and three-dimensional (3D) metric and attribute data associated with individual BSM and a second model comparing 3D geometric morphometric (GM) shape data associated with BSM.

The 2D/3D attribute model of BSM is used evaluate an assemblage of fossil BSM recovered from the Ledi-Geraru research area, Ethiopia (2.82 Ma) in spatiotemporal association with early Homo. The results of the analysis reveal compelling evidence for early butchery activities, suggesting hominins may have been using both modified and unmodified stone implements to process carcasses.

The second model, based upon 3D GM data, was used to evaluate the earliest purported evidence for stone-mediated butchery at Dikika, Ethiopia (3.39 Ma). The Dikika marks have been argued to be the result of crocodile feeding, trampling, and butchery by three different research groups. The 3D GM model evaluates the likelihood of each of these actors in the production of the controversial Dikika marks.
ContributorsHarris, Jacob A (Author) / Marean, Curtis W (Thesis advisor) / Hill, Kim (Committee member) / Boyd, Robert (Committee member) / Thompson, Jessica (Committee member) / Campisano, Christopher (Committee member) / Arizona State University (Publisher)
Created2019
157916-Thumbnail Image.png
Description
For most of human history hunting has been the primary economic activity of men. Hunted animals are valued for their food energy and nutrients, however, hunting is associated with a high risk of failure. Additionally, large animals cannot be consumed entirely by the nuclear family, so much of the harvest

For most of human history hunting has been the primary economic activity of men. Hunted animals are valued for their food energy and nutrients, however, hunting is associated with a high risk of failure. Additionally, large animals cannot be consumed entirely by the nuclear family, so much of the harvest may be shared to others. This has led some researchers to ask why men hunt large and difficult game. The “costly signaling” and “show-off” hypotheses propose that large prey are hunted because the difficulty of finding and killing them is a reliable costly signal of the phenotypic quality of the hunter.

These hypotheses were tested using original interview data from Aché (hunter gatherer; n=52, age range 50-76, 46% female) and Tsimané (horticulturalist; n=40, age range 15-77, 45% female) informants. Ranking tasks and paired comparison tasks were used to determine the association between the costs of killing an animal and its value as a signal of hunter phenotypic quality for attracting mates and allies. Additional tasks compared individual large animals to groups of smaller animals to determine whether assessments of hunters’ phenotypes and preferred status were more impacted by the signal value of the species or by the weight and number of animals killed.

Aché informants perceived hunters who killed larger or harder to kill animals as having greater provisioning ability, strength, fighting ability, and disease susceptibility, and preferred them as mates and allies. Tsimané informants held a similar preference for hunters who killed large game, but not for hunters targeting hard to kill species. When total biomass harvested was controlled, both populations considered harvesting more animals in a given time period to be a better signal of preferred phenotypes than killing a single large and impressive species. Male and female informants both preferred hunters who consistently brought back small game over hunters who sometimes killed large animals and sometimes killed nothing. No evidence was found that hunters should forgo overall food return rates in order to signal phenotypic qualities by specializing on large game. Nutrient provisioning rather than costly phenotypic signaling was the strategy preferred by potential mates and allies.
ContributorsBishop, Andrew Phillip Carson (Author) / Hill, Kim (Thesis advisor) / Boyd, Robert (Committee member) / Trumble, Benjamin (Committee member) / Arizona State University (Publisher)
Created2019
129422-Thumbnail Image.png
Description

Faced with numerous seemingly intractable social and environmental challenges, many scholars and practitioners are increasingly interested in understanding how to actively engage and transform the existing systems holding such problems in place. Although a variety of analytical models have emerged in recent years, most emphasize either the social or ecological

Faced with numerous seemingly intractable social and environmental challenges, many scholars and practitioners are increasingly interested in understanding how to actively engage and transform the existing systems holding such problems in place. Although a variety of analytical models have emerged in recent years, most emphasize either the social or ecological elements of such transformations rather than their coupled nature. To address this, first we have presented a definition of the core elements of a social-ecological system (SES) that could potentially be altered in a transformation. Second, we drew on insights about transformation from three branches of literature focused on radical change, i.e., social movements, socio-technical transitions, and social innovation, and gave consideration to the similarities and differences with the current studies by resilience scholars. Drawing on these findings, we have proposed a framework that outlines the process and phases of transformative change in an SES. Future research will be able to utilize the framework as a tool for analyzing the alteration of social-ecological feedbacks, identifying critical barriers and leverage points and assessing the outcome of social-ecological transformations.

ContributorsMoore, Michele-Lee (Author) / Tjornbo, Ola (Author) / Enfors, Elin (Author) / Knapp, Corrie (Author) / Hodbod, Jennifer (Author) / Baggio, Jacopo (Author) / Norstrom, Albert (Author) / Olsson, Per (Author) / Biggs, Duan (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-11-30
128778-Thumbnail Image.png
Description

Online communities are becoming increasingly important as platforms for large-scale human cooperation. These communities allow users seeking and sharing professional skills to solve problems collaboratively. To investigate how users cooperate to complete a large number of knowledge-producing tasks, we analyze Stack Exchange, one of the largest question and answer systems

Online communities are becoming increasingly important as platforms for large-scale human cooperation. These communities allow users seeking and sharing professional skills to solve problems collaboratively. To investigate how users cooperate to complete a large number of knowledge-producing tasks, we analyze Stack Exchange, one of the largest question and answer systems in the world. We construct attention networks to model the growth of 110 communities in the Stack Exchange system and quantify individual answering strategies using the linking dynamics on attention networks. We identify two answering strategies. Strategy A aims at performing maintenance by doing simple tasks, whereas strategy B aims at investing time in doing challenging tasks. Both strategies are important: empirical evidence shows that strategy A decreases the median waiting time for answers and strategy B increases the acceptance rate of answers. In investigating the strategic persistence of users, we find that users tends to stick on the same strategy over time in a community, but switch from one strategy to the other across communities. This finding reveals the different sets of knowledge and skills between users. A balance between the population of users taking A and B strategies that approximates 2:1, is found to be optimal to the sustainable growth of communities.

ContributorsWu, Lingfei (Author) / Baggio, Jacopo (Author) / Janssen, Marco (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2016-03-02
Description

On-going efforts to understand the dynamics of coupled social-ecological (or more broadly, coupled infrastructure) systems and common pool resources have led to the generation of numerous datasets based on a large number of case studies. This data has facilitated the identification of important factors and fundamental principles which increase our

On-going efforts to understand the dynamics of coupled social-ecological (or more broadly, coupled infrastructure) systems and common pool resources have led to the generation of numerous datasets based on a large number of case studies. This data has facilitated the identification of important factors and fundamental principles which increase our understanding of such complex systems. However, the data at our disposal are often not easily comparable, have limited scope and scale, and are based on disparate underlying frameworks inhibiting synthesis, meta-analysis, and the validation of findings. Research efforts are further hampered when case inclusion criteria, variable definitions, coding schema, and inter-coder reliability testing are not made explicit in the presentation of research and shared among the research community. This paper first outlines challenges experienced by researchers engaged in a large-scale coding project; then highlights valuable lessons learned; and finally discusses opportunities for further research on comparative case study analysis focusing on social-ecological systems and common pool resources. Includes supplemental materials and appendices published in the International Journal of the Commons 2016 Special Issue. Volume 10 - Issue 2 - 2016.

ContributorsRatajczyk, Elicia (Author) / Brady, Ute (Author) / Baggio, Jacopo (Author) / Barnett, Allain J. (Author) / Perez Ibarra, Irene (Author) / Rollins, Nathan (Author) / Rubinos, Cathy (Author) / Shin, Hoon Cheol (Author) / Yu, David (Author) / Aggarwal, Rimjhim (Author) / Anderies, John (Author) / Janssen, Marco (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2016-09-09
Description

Governing common pool resources (CPR) in the face of disturbances such as globalization and climate change is challenging. The outcome of any CPR governance regime is the influenced by local combinations of social, institutional, and biophysical factors, as well as cross-scale interdependencies. In this study, we take a step towards

Governing common pool resources (CPR) in the face of disturbances such as globalization and climate change is challenging. The outcome of any CPR governance regime is the influenced by local combinations of social, institutional, and biophysical factors, as well as cross-scale interdependencies. In this study, we take a step towards understanding multiple-causation of CPR outcomes by analyzing 1) the co-occurrence of Design Principles (DP) by activity (irrigation, fishery and forestry), and 2) the combination(s) of DPs leading to social and ecological success. We analyzed 69 cases pertaining to three different activities: irrigation, fishery, and forestry. We find that the importance of the design principles is dependent upon the natural and hard human made infrastructure (i.e. canals, equipment, vessels etc.). For example, clearly defined social boundaries are important when the natural infrastructure is highly mobile (i.e. tuna fish), while monitoring is more important when the natural infrastructure is more static (i.e. forests or water contained within an irrigation system). However, we also find that congruence between local conditions and rules and proportionality between investment and extraction are key for CPR success independent from the natural and human hard made infrastructure. We further provide new visualization techniques for co-occurrence patterns and add to qualitative comparative analysis by introducing a reliability metric to deal with a large meta-analysis dataset on secondary data where information is missing or uncertain.

Includes supplemental materials and appendices publications in International Journal of the Commons 2016 Special Issue. Volume 10 - Issue 2 - 2016

ContributorsBaggio, Jacopo (Author) / Barnett, Alain J. (Author) / Perez, Irene (Author) / Brady, Ute (Author) / Ratajczyk, Elicia (Author) / Rollins, Nathan (Author) / Rubinos, Cathy (Author) / Shin, Hoon Cheol (Author) / Yu, David (Author) / Aggarwal, Rimjhim (Author) / Anderies, John (Author) / Janssen, Marco (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2016-09-09
128315-Thumbnail Image.png
Description

Many recent studies observe the increasing importance, influence, and analysis of resilience as a concept to understand the capacity of a system or individual to respond to change. The term has achieved prominence in diverse scientific fields, as well as public discourse and policy arenas. As a result, resilience has

Many recent studies observe the increasing importance, influence, and analysis of resilience as a concept to understand the capacity of a system or individual to respond to change. The term has achieved prominence in diverse scientific fields, as well as public discourse and policy arenas. As a result, resilience has been referred to as a boundary object or a bridging concept that is able to facilitate communication and understanding across disciplines, coordinate groups of actors or stakeholders, and build consensus around particular policy issues. We present a network analysis of bibliometric data to understand the extent to which resilience can be considered as a boundary object or a bridging concept in terms of its links across disciplines and scientific fields. We analyzed 994 papers and 35,952 citations between them to reveal the connectedness and links between and within fields. We analyzed the network according to different fields, modules, and sub-fields, showing a highly clustered citation network. Analyzing betweenness allowed us to identify how particular papers bridge across fields and how different fields are linked. With the exception of a few specific papers, most papers cite exclusively within their own field. We conclude that resilience is to an extent a boundary object because there are shared understandings across diverse disciplines and fields. However, it is more limited as a bridging concept because the citations across fields are concentrated among particular disciplines and papers, so the distinct fields do not widely or routinely refer to each other. There are some signs of resilience being used as an interdisciplinary concept to bridge scientific fields, particularly in social-ecological systems, which may itself constitute an emerging sub-field.

ContributorsBaggio, Jacopo (Author) / Brown, Katrina (Author) / Hellebrandt, Denis (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2015
128244-Thumbnail Image.png
Description

Large-N comparative studies have helped common pool resource scholars gain general insights into the factors that influence collective action and governance outcomes. However, these studies are often limited by missing data, and suffer from the methodological limitation that important information is lost when we reduce textual information to quantitative data.

Large-N comparative studies have helped common pool resource scholars gain general insights into the factors that influence collective action and governance outcomes. However, these studies are often limited by missing data, and suffer from the methodological limitation that important information is lost when we reduce textual information to quantitative data. This study was motivated by nine case studies that appeared to be inconsistent with the expectation that the presence of Ostrom’s Design Principles increases the likelihood of successful common pool resource governance. These cases highlight the limitations of coding and analyzing Large-N case studies.

We examine two issues: 1) the challenge of missing data and 2) potential approaches that rely on context (which is often lost in the coding process) to address inconsistencies between empirical observations theoretical predictions. For the latter, we conduct a post-hoc qualitative analysis of a large-N comparative study to explore 2 types of inconsistencies: 1) cases where evidence for nearly all design principles was found, but available evidence led to the assessment that the CPR system was unsuccessful and 2) cases where the CPR system was deemed successful despite finding limited or no evidence for design principles. We describe inherent challenges to large-N comparative analysis to coding complex and dynamically changing common pool resource systems for the presence or absence of design principles and the determination of “success”. Finally, we illustrate how, in some cases, our qualitative analysis revealed that the identity of absent design principles explained inconsistencies hence de-facto reconciling such apparent inconsistencies with theoretical predictions. This analysis demonstrates the value of combining quantitative and qualitative analysis, and using mixed-methods approaches iteratively to build comprehensive methodological and theoretical approaches to understanding common pool resource governance in a dynamically changing context.

ContributorsBarnett, Allain (Author) / Baggio, Jacopo (Author) / Shin, Hoon Cheol (Author) / Yu, David (Author) / Perez Ibarra, Irene (Author) / Rubinos, Cathy (Author) / Brady, Ute (Author) / Ratajczyk, Elicia (Author) / Rollins, Nathan (Author) / Aggarwal, Rimjhim (Author) / Anderies, John (Author) / Janssen, Marco (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2016-09-09
128245-Thumbnail Image.png
Description

Research on collective action and common-pool resources is extensive. However, little work has concentrated on the effect of variability in resource availability and collective action, especially in the context of asymmetric access to resources. Earlier works have demonstrated that environmental variability often leads to a reduction of collective action in

Research on collective action and common-pool resources is extensive. However, little work has concentrated on the effect of variability in resource availability and collective action, especially in the context of asymmetric access to resources. Earlier works have demonstrated that environmental variability often leads to a reduction of collective action in the governance of shared resources. Here we assess how environmental variability may impact collective action. We performed a behavioral experiment involving an irrigation dilemma. In this dilemma participants invested first into a public fund that generated water resources for the group, which were subsequently appropriated by one participant at a time from head end to tail end. The amount of resource generated for the given investment level was determined by a payoff table and a stochastic event representing environmental variability, i.e., rainfall. Results show that that (1) upstream users’ behavior is by far the most important variable in determining the outcome of collective action; (2) environmental variability (i.e. risk level in investing in the resource) has little effect on individual investment and extraction levels; and (3) the action-reaction feedback is fundamental in determining the success or failure of communities.

ContributorsBaggio, Jacopo (Author) / Rollins, Nathan (Author) / Perez, Irene (Author) / Janssen, Marco (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2015