Matching Items (39)
Description
Hematopoietic stem cell transplantation (HSCT) is a unique but intense procedure used to save the lives of patients with hematopoietic malignancies. However, patients and caregivers undergoing HSCT can experience prolonged psychological distress due to an intense and distinctive transplant process. Types of psychological distress include anxiety, depression, social isolation, and

Hematopoietic stem cell transplantation (HSCT) is a unique but intense procedure used to save the lives of patients with hematopoietic malignancies. However, patients and caregivers undergoing HSCT can experience prolonged psychological distress due to an intense and distinctive transplant process. Types of psychological distress include anxiety, depression, social isolation, and post-traumatic stress disorder. Although this a significant healthcare problem, limited research has been conducted within the HSCT patient and caregiver population to investigate ways to improve their mental health. The purpose of this study was to examine the effects of an educational video intervention about post-transplant recovery in decreasing emotional distress and promoting emotional well-being in HSCT patients and caregivers. This pilot study utilized a quantitative single-group pretest-posttest design to examine the effect of educational videos on participant's emotional well-being. Four educational videos were developed using information gathered from several reliable bone marrow transplant and cancer websites. A convenience sampling method was used to recruit HSCT patient and caregiver participants. Eleven Caucasian, English-speaking individuals (6 patients, 5 caregivers; 54.5% female; M age= 43.7 years) across the United States were enrolled in the 60-90 minute online intervention. Participant responses were measured using pretest and posttest questionnaires. Results from the study found that the educational videos were effective in decreasing levels of depression and anxiety. Implications for nursing practice include the need to educate HSCT patients and caregivers about transplant recovery to decrease emotional distress. This study demonstrates the impact post-transplant education has on decreasing depression and anxiety in HSCT patients and caregivers.
ContributorsBosselman, Kate Elizabeth (Author) / Kim, Sunny (Thesis director) / Lee, Rebecca (Committee member) / Arizona State University. College of Nursing & Healthcare Innovation (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description

This thesis project is a first-grade curriculum that is tailored for schools with school gardens. The curriculum contains worksheets and activities for the students, making it easier for teachers to take care of the school garden while also playing a part in fighting food injustice. The curriculum has 4 subjects:

This thesis project is a first-grade curriculum that is tailored for schools with school gardens. The curriculum contains worksheets and activities for the students, making it easier for teachers to take care of the school garden while also playing a part in fighting food injustice. The curriculum has 4 subjects: Math, Language Arts, Science, and Nutrition Education.

ContributorsShah, Hirni (Author) / McGregor, Joan (Thesis director) / Lee, Rebecca (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Social Transformation (Contributor)
Created2023-05
Description

The purpose of this thesis is to determine whether Tai Chi Qigong or Health Information podcasts are more effective for improving mental health and sleep outcomes for midlife women with mobility impairments. No other studies have been done to investigate whether Tai Chi can be more effective for sleep, depressive

The purpose of this thesis is to determine whether Tai Chi Qigong or Health Information podcasts are more effective for improving mental health and sleep outcomes for midlife women with mobility impairments. No other studies have been done to investigate whether Tai Chi can be more effective for sleep, depressive symptoms, and anxiety for midlife women with mobility impairments specifically. Overall, it was found that midlife women with mobility impairments experienced better sleep when they focused on health information podcasts in comparison to Tai Chi. Change in anxiety and depressive symptoms were negligible.

ContributorsRastkhiz, Tara (Author) / Carvallo, Joanna (Co-author) / Lee, Rebecca (Thesis director) / Rodney, Joseph (Committee member) / Santana, Robert (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor)
Created2023-05
Description

The purpose of this thesis is to determine whether Tai Chi Qigong or Health Information podcasts are more effective for improving mental health and sleep outcomes for midlife women with mobility impairments. No other studies have been done to investigate whether Tai Chi can be more effective for sleep, depressive

The purpose of this thesis is to determine whether Tai Chi Qigong or Health Information podcasts are more effective for improving mental health and sleep outcomes for midlife women with mobility impairments. No other studies have been done to investigate whether Tai Chi can be more effective for sleep, depressive symptoms, and anxiety for midlife women with mobility impairments specifically. Overall, it was found that midlife women with mobility impairments experienced better sleep when they focused on health information podcasts in comparison to Tai Chi. Change in anxiety and depressive symptoms were negligible.

ContributorsCarvallo, Joanna (Author) / Rastkhiz, Tara (Co-author) / Lee, Rebecca (Thesis director) / Joseph, Rodney (Committee member) / Santana, Robert (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
155773-Thumbnail Image.png
Description
Organic optoelectronic devices have drawn extensive attention by over the past two decades. Two major applications for Organic optoelectronic devices are efficient organic photovoltaic devices(OPV) and organic light emitting diodes (OLED). Organic Solar cell has been proven to be compatible with the low cost, large area bulk processing technology and

Organic optoelectronic devices have drawn extensive attention by over the past two decades. Two major applications for Organic optoelectronic devices are efficient organic photovoltaic devices(OPV) and organic light emitting diodes (OLED). Organic Solar cell has been proven to be compatible with the low cost, large area bulk processing technology and processed high absorption efficiencies compared to inorganic solar cells. Organic light emitting diodes are a promising approach for display and solid state lighting applications. To improve the efficiency, stability, and materials variety for organic optoelectronic devices, several emissive materials, absorber-type materials, and charge transporting materials were developed and employed in various device settings. Optical, electrical, and photophysical studies of the organic materials and their corresponding devices were thoroughly carried out. In this thesis, Chapter 1 provides an introduction to the background knowledge of OPV and OLED research fields presented. Chapter 2 discusses new porphyrin derivatives- azatetrabenzylporphyrins for OPV and near infrared OLED applications. A modified synthetic method is utilized to increase the reaction yield of the azatetrabenzylporphyrin materials and their photophysical properties, electrochemical properties are studied. OPV devices are also fabricated using Zinc azatetrabenzylporphyrin as donor materials. Pt(II) azatetrabenzylporphyrin were also synthesized and used in near infra-red OLED to achieve an emission over 800 nm with reasonable external quantum efficiencies. Chapter 3, discusses the synthesis, characterization, and device evaluation of a series of tetradentate platinum and palladium complexesfor single doped white OLED applications and RGB white OLED applications. Devices employing some of the developed emitters demonstrated impressively high external quantum efficiencies within the range of 22%-27% for various emitter concentrations. And the palladium complex, i.e. Pd3O3, enables the fabrication of stable devices achieving nearly 1000h. at 1000cd/m2 without any outcoupling enhancement while simultaneously achieving peak external quantum efficiencies of 19.9%. Chapter 4 discusses tetradentate platinum and palladium complexes as deep blue emissive materials for display and lighting applications. The platinum complex PtNON, achieved a peak external quantum efficiency of 24.4 % and CIE coordinates of (0.18, 0.31) in a device structure designed for charge confinement and the palladium complexes Pd2O2 exhibited peak external quantum efficiency of up to 19.2%.
ContributorsHuang, Liang (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2017
129524-Thumbnail Image.png
Description

The relation between flux and fluctuation is fundamental to complex physical systems that support and transport flows. A recently obtained law predicts monotonous enhancement of fluctuation as the average flux is increased, which in principle is valid but only for large systems. For realistic complex systems of small sizes, this

The relation between flux and fluctuation is fundamental to complex physical systems that support and transport flows. A recently obtained law predicts monotonous enhancement of fluctuation as the average flux is increased, which in principle is valid but only for large systems. For realistic complex systems of small sizes, this law breaks down when both the average flux and fluctuation become large. Here we demonstrate the failure of this law in small systems using real data and model complex networked systems, derive analytically a modified flux-fluctuation law, and validate it through computations of a large number of complex networked systems. Our law is more general in that its predictions agree with numerics and it reduces naturally to the previous law in the limit of large system size, leading to new insights into the flow dynamics in small-size complex systems with significant implications for the statistical and scaling behaviors of small systems, a topic of great recent interest.

ContributorsHuang, Zi-Gang (Author) / Dong, Jia-Qi (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-10-27
129346-Thumbnail Image.png
Description

An outstanding and fundamental problem in contemporary physics is to include and probe the many-body effect in the study of relativistic quantum manifestations of classical chaos. We address this problem using graphene systems described by the Hubbard Hamiltonian in the setting of resonant tunneling. Such a system consists of two

An outstanding and fundamental problem in contemporary physics is to include and probe the many-body effect in the study of relativistic quantum manifestations of classical chaos. We address this problem using graphene systems described by the Hubbard Hamiltonian in the setting of resonant tunneling. Such a system consists of two symmetric potential wells separated by a potential barrier, and the geometric shape of the whole domain can be chosen to generate integrable or chaotic dynamics in the classical limit. Employing a standard mean-field approach to calculating a large number of eigenenergies and eigenstates, we uncover a class of localized states with near-zero tunneling in the integrable systems. These states are not the edge states typically seen in graphene systems, and as such they are the consequence of many-body interactions. The physical origin of the non-edge-state type of localized states can be understood by the one-dimensional relativistic quantum tunneling dynamics through the solutions of the Dirac equation with appropriate boundary conditions. We demonstrate that, when the geometry of the system is modified to one with chaos, the localized states are effectively removed, implying that in realistic situations where many-body interactions are present, classical chaos is capable of facilitating greatly quantum tunneling. This result, besides its fundamental importance, can be useful for the development of nanoscale devices such as graphene-based resonant-tunneling diodes.

ContributorsYing, Lei (Author) / Wang, Guanglei (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-16
129347-Thumbnail Image.png
Description

Dynamical systems based on the minority game (MG) have been a paradigm for gaining significant insights into a variety of social and biological behaviors. Recently, a grouping phenomenon has been unveiled in MG systems of multiple resources (strategies) in which the strategies spontaneously break into an even number of groups,

Dynamical systems based on the minority game (MG) have been a paradigm for gaining significant insights into a variety of social and biological behaviors. Recently, a grouping phenomenon has been unveiled in MG systems of multiple resources (strategies) in which the strategies spontaneously break into an even number of groups, each exhibiting an identical oscillation pattern in the attendance of game players. Here we report our finding of spontaneous breakup of resources into three groups, each exhibiting period-three oscillations. An analysis is developed to understand the emergence of the striking phenomenon of triple grouping and period-three oscillations. In the presence of random disturbances, the triple-group/period-three state becomes transient, and we obtain explicit formula for the average transient lifetime using two methods of approximation. Our finding indicates that, period-three oscillation, regarded as one of the most fundamental behaviors in smooth nonlinear dynamical systems, can also occur in much more complex, evolutionary-game dynamical systems. Our result also provides a plausible insight for the occurrence of triple grouping observed, for example, in the U.S. housing market.

ContributorsDong, Jia-Qi (Author) / Huang, Zi-Gang (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-23
129372-Thumbnail Image.png
Description

Understanding the dynamics of human movements is key to issues of significant current interest such as behavioral prediction, recommendation, and control of epidemic spreading. We collect and analyze big data sets of human movements in both cyberspace (through browsing of websites) and physical space (through mobile towers) and find a

Understanding the dynamics of human movements is key to issues of significant current interest such as behavioral prediction, recommendation, and control of epidemic spreading. We collect and analyze big data sets of human movements in both cyberspace (through browsing of websites) and physical space (through mobile towers) and find a superlinear scaling relation between the mean frequency of visit〈f〉and its fluctuation σ : σ ∼〈f⟩β with β ≈ 1.2. The probability distribution of the visiting frequency is found to be a stretched exponential function. We develop a model incorporating two essential ingredients, preferential return and exploration, and show that these are necessary for generating the scaling relation extracted from real data. A striking finding is that human movements in cyberspace and physical space are strongly correlated, indicating a distinctive behavioral identifying characteristic and implying that the behaviors in one space can be used to predict those in the other.

ContributorsZhao, Zhidan (Author) / Huang, Zi-Gang (Author) / Huang, Liang (Author) / Liu, Huan (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-11-12
129287-Thumbnail Image.png
Description

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into account of the collective contribution from all available scattering channels, we derive a universal formula for the Fano-resonance profile. We show that our formula bridges naturally the traditional Fano formulas with complex and real asymmetry parameters, indicating that the two types of formulas are fundamentally equivalent (except for an offset). The connection also reveals a clear footprint for the conductance resonance during a dephasing process. Therefore, the emergence of complex asymmetric parameter when fitting with experimental data needs to be properly interpreted. Furthermore, we have provided a theory for the width of the resonance, which relates explicitly the width to the degree of localization of the close-by eigenstates and the corresponding coupling matrices or the self-energies caused by the leads. Our work not only resolves the issue about the nature of the asymmetry parameter, but also provides deeper physical insights into the origin of Fano resonance. Since the only assumption in our treatment is that the transport can be described by the Green’s function formalism, our results are also valid for broad disciplines including scattering problems of electromagnetic waves, acoustics, and seismology.

ContributorsHuang, Liang (Author) / Lai, Ying-Cheng (Author) / Luo, Hong-Gang (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01