Matching Items (41)
150288-Thumbnail Image.png
Description
In an effort to begin validating the large number of discovered candidate biomarkers, proteomics is beginning to shift from shotgun proteomic experiments towards targeted proteomic approaches that provide solutions to automation and economic concerns. Such approaches to validate biomarkers necessitate the mass spectrometric analysis of hundreds to thousands of human

In an effort to begin validating the large number of discovered candidate biomarkers, proteomics is beginning to shift from shotgun proteomic experiments towards targeted proteomic approaches that provide solutions to automation and economic concerns. Such approaches to validate biomarkers necessitate the mass spectrometric analysis of hundreds to thousands of human samples. As this takes place, a serendipitous opportunity has become evident. By the virtue that as one narrows the focus towards "single" protein targets (instead of entire proteomes) using pan-antibody-based enrichment techniques, a discovery science has emerged, so to speak. This is due to the largely unknown context in which "single" proteins exist in blood (i.e. polymorphisms, transcript variants, and posttranslational modifications) and hence, targeted proteomics has applications for established biomarkers. Furthermore, besides protein heterogeneity accounting for interferences with conventional immunometric platforms, it is becoming evident that this formerly hidden dimension of structural information also contains rich-pathobiological information. Consequently, targeted proteomics studies that aim to ascertain a protein's genuine presentation within disease- stratified populations and serve as a stepping-stone within a biomarker translational pipeline are of clinical interest. Roughly 128 million Americans are pre-diabetic, diabetic, and/or have kidney disease and public and private spending for treating these diseases is in the hundreds of billions of dollars. In an effort to create new solutions for the early detection and management of these conditions, described herein is the design, development, and translation of mass spectrometric immunoassays targeted towards diabetes and kidney disease. Population proteomics experiments were performed for the following clinically relevant proteins: insulin, C-peptide, RANTES, and parathyroid hormone. At least thirty-eight protein isoforms were detected. Besides the numerous disease correlations confronted within the disease-stratified cohorts, certain isoforms also appeared to be causally related to the underlying pathophysiology and/or have therapeutic implications. Technical advancements include multiplexed isoform quantification as well a "dual- extraction" methodology for eliminating non-specific proteins while simultaneously validating isoforms. Industrial efforts towards widespread clinical adoption are also described. Consequently, this work lays a foundation for the translation of mass spectrometric immunoassays into the clinical arena and simultaneously presents the most recent advancements concerning the mass spectrometric immunoassay approach.
ContributorsOran, Paul (Author) / Nelson, Randall (Thesis advisor) / Hayes, Mark (Thesis advisor) / Ros, Alexandra (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2011
151436-Thumbnail Image.png
Description
Signal processing techniques have been used extensively in many engineering problems and in recent years its application has extended to non-traditional research fields such as biological systems. Many of these applications require extraction of a signal or parameter of interest from degraded measurements. One such application is mass spectrometry immunoassay

Signal processing techniques have been used extensively in many engineering problems and in recent years its application has extended to non-traditional research fields such as biological systems. Many of these applications require extraction of a signal or parameter of interest from degraded measurements. One such application is mass spectrometry immunoassay (MSIA) which has been one of the primary methods of biomarker discovery techniques. MSIA analyzes protein molecules as potential biomarkers using time of flight mass spectrometry (TOF-MS). Peak detection in TOF-MS is important for biomarker analysis and many other MS related application. Though many peak detection algorithms exist, most of them are based on heuristics models. One of the ways of detecting signal peaks is by deploying stochastic models of the signal and noise observations. Likelihood ratio test (LRT) detector, based on the Neyman-Pearson (NP) lemma, is an uniformly most powerful test to decision making in the form of a hypothesis test. The primary goal of this dissertation is to develop signal and noise models for the electrospray ionization (ESI) TOF-MS data. A new method is proposed for developing the signal model by employing first principles calculations based on device physics and molecular properties. The noise model is developed by analyzing MS data from careful experiments in the ESI mass spectrometer. A non-flat baseline in MS data is common. The reasons behind the formation of this baseline has not been fully comprehended. A new signal model explaining the presence of baseline is proposed, though detailed experiments are needed to further substantiate the model assumptions. Signal detection schemes based on these signal and noise models are proposed. A maximum likelihood (ML) method is introduced for estimating the signal peak amplitudes. The performance of the detection methods and ML estimation are evaluated with Monte Carlo simulation which shows promising results. An application of these methods is proposed for fractional abundance calculation for biomarker analysis, which is mathematically robust and fundamentally different than the current algorithms. Biomarker panels for type 2 diabetes and cardiovascular disease are analyzed using existing MS analysis algorithms. Finally, a support vector machine based multi-classification algorithm is developed for evaluating the biomarkers' effectiveness in discriminating type 2 diabetes and cardiovascular diseases and is shown to perform better than a linear discriminant analysis based classifier.
ContributorsBuddi, Sai (Author) / Taylor, Thomas (Thesis advisor) / Cochran, Douglas (Thesis advisor) / Nelson, Randall (Committee member) / Duman, Tolga (Committee member) / Arizona State University (Publisher)
Created2012
151170-Thumbnail Image.png
Description
Cancer claims hundreds of thousands of lives every year in US alone. Finding ways for early detection of cancer onset is crucial for better management and treatment of cancer. Thus, biomarkers especially protein biomarkers, being the functional units which reflect dynamic physiological changes, need to be discovered. Though important, there

Cancer claims hundreds of thousands of lives every year in US alone. Finding ways for early detection of cancer onset is crucial for better management and treatment of cancer. Thus, biomarkers especially protein biomarkers, being the functional units which reflect dynamic physiological changes, need to be discovered. Though important, there are only a few approved protein cancer biomarkers till date. To accelerate this process, fast, comprehensive and affordable assays are required which can be applied to large population studies. For this, these assays should be able to comprehensively characterize and explore the molecular diversity of nominally "single" proteins across populations. This information is usually unavailable with commonly used immunoassays such as ELISA (enzyme linked immunosorbent assay) which either ignore protein microheterogeneity, or are confounded by it. To this end, mass spectrometric immuno assays (MSIA) for three different human plasma proteins have been developed. These proteins viz. IGF-1, hemopexin and tetranectin have been found in reported literature to show correlations with many diseases along with several carcinomas. Developed assays were used to extract entire proteins from plasma samples and subsequently analyzed on mass spectrometric platforms. Matrix assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometric techniques where used due to their availability and suitability for the analysis. This resulted in visibility of different structural forms of these proteins showing their structural micro-heterogeneity which is invisible to commonly used immunoassays. These assays are fast, comprehensive and can be applied in large sample studies to analyze proteins for biomarker discovery.
ContributorsRai, Samita (Author) / Nelson, Randall (Thesis advisor) / Hayes, Mark (Thesis advisor) / Borges, Chad (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2012
136109-Thumbnail Image.png
Description
Students across the United States lack the necessary skills to be successful college students in Science, Technology and Math (STEM) majors and as a result post-secondary institutions are developing summer bridge programs to aid in their transition. As they develop these programs, effective theory and approach are critical to developing

Students across the United States lack the necessary skills to be successful college students in Science, Technology and Math (STEM) majors and as a result post-secondary institutions are developing summer bridge programs to aid in their transition. As they develop these programs, effective theory and approach are critical to developing successful programs. Though there are a multitude of theories on successful student development, a focus on self-efficacy is critical. Summer Bridge programs across the country as well as the Bio Bridge summer program at Arizona State University were studied alone and through the lens of Cognitive Self-Efficacy Theory as mentioned in Albert Bandura's "Perceived Self-Efficacy in Cognitive Development and Functioning." Cognitive Self-Efficacy Theory provides a framework for self-efficacy development in academic settings. An analysis of fifteen bridge programs found that a large majority focused on developing academic capabilities and often overlooked development of community and social efficacy. An even larger number failed to focus on personal psychology in managing self-debilitating thought patterns based on published goals. Further, Arizona State University's Bio Bridge program could not be considered successful at developing cognitive self-efficacy or increasing retention as data was inconclusive. However, Bio Bridge was tremendously successful at developing social efficacy and community among participants and faculty. Further research and better evaluative techniques need to be developed to understand the program's effectiveness in cognitive self-efficacy development and retention.
ContributorsTummala, Sailesh Vardhan (Author) / Orchinik, Miles (Thesis director) / Brownell, Sara (Committee member) / Shortlidge, Erin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136827-Thumbnail Image.png
Description
Collaborative learning has been found to enhance student learning experiences through interaction with peers and instructors in a way that typically does not occur in a traditional lecture course. However, more than half of all collaborative learning structures have failed to last very long after their initial introductions which makes

Collaborative learning has been found to enhance student learning experiences through interaction with peers and instructors in a way that typically does not occur in a traditional lecture course. However, more than half of all collaborative learning structures have failed to last very long after their initial introductions which makes understanding the factors of collaboration that make it successful very important. The purpose of this study was to evaluate collaborative learning in a blended learning course to gauge student perceptions and the factors of collaboration and student demographics that impact that perception. This was done by surveying a sample of students in BIO 282 about their experiences in the BIO 281 course they took previously which was a new introductory Biology course with a blended learning structure. It was found that students agree that collaboration is beneficial as it provides an opportunity to gain additional insight from peers and improve students' understanding of course content. Also, differences in student gender and first generation status have less of an effect on student perceptions of collaboration than differences in academic achievement (grade) bracket.
ContributorsVu, Bethany Thao-Vy (Author) / Stout, Valerie (Thesis director) / Brownell, Sara (Committee member) / Wright, Christian (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136383-Thumbnail Image.png
Description
We, a team of students and faculty in the life sciences at Arizona State University (ASU), currently teach an Introduction to Biology course in a Level 5, or maximum-security unit with the support of the Arizona Department of Corrections and the Prison Education Program at ASU. This course aims to

We, a team of students and faculty in the life sciences at Arizona State University (ASU), currently teach an Introduction to Biology course in a Level 5, or maximum-security unit with the support of the Arizona Department of Corrections and the Prison Education Program at ASU. This course aims to enhance current programs at the unit by offering inmates an opportunity to practice literacy and math skills, while also providing exposure to a new academic field (science, and specifically biology). Numerous studies, including a 2005 study from the Arizona Department of Corrections (ADC), have found that vocational programs, including prison education programs, reduce recidivism rates (ADC 2005, Esperian 2010, Jancic 1988, Steurer et al. 2001, Ubic 2002) and may provide additional benefits such as engagement with a world outside the justice system (Duguid 1992), the opportunity for inmates to revise personal patterns of rejecting education that they may regret, and the ability of inmate parents to deliberately set a good example for their children (Hall and Killacky 2008). Teaching in a maximum security prison unit poses special challenges, which include a prohibition on most outside materials (except paper), severe restrictions on student-teacher and student-student interactions, and the inability to perform any lab exercises except limited computer simulations. Lack of literature discussing theoretical and practical aspects of teaching science in such environment has prompted us to conduct an ongoing study to generate notes and recommendations from this class through the use of surveys, academic evaluation of students' work and ongoing feedback from both teachers and students to inform teaching practices in future science classes in high-security prison units.
ContributorsLarson, Anika Jade (Author) / Mor, Tsafrir (Thesis director) / Brownell, Sara (Committee member) / Lockard, Joe (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of Life Sciences (Contributor)
Created2015-05
132219-Thumbnail Image.png
Description
This thesis contains three chapters, all of which involve using culturally inclusive education to explore the experiences of religious undergraduate biology students. The first chapter is an essay entitled "Toward Culturally Inclusive Undergraduate Biology Education," which describes a literature review performed with the aim of characterizing the landscape of cultural

This thesis contains three chapters, all of which involve using culturally inclusive education to explore the experiences of religious undergraduate biology students. The first chapter is an essay entitled "Toward Culturally Inclusive Undergraduate Biology Education," which describes a literature review performed with the aim of characterizing the landscape of cultural competence and related terms for biology educators and biology education researchers. This chapter highlights the use of 16 different terms related to cultural competence and presents these terms, their definitions, and highlights their similarities and differences. This chapter also identifies gaps in the cultural competence literature, and presents a set of recommendations to support better culturally inclusive interventions in undergraduate science education. The second chapter, entitled "Different Evolution Acceptance Instruments Lead to Different Research Findings," describes a study in which the source of 30 years of conflicting research on the relationship between evolution acceptance and evolution understanding was determined. The results of this study showed that different instruments used to measure evolution acceptance sometimes lead to different research results and conclusions. The final chapter, entitled "Believing That Evolution is Atheistic is Associated with Poor Evolution Education Outcomes Among Religious College Students," describes a study characterizing definitions of evolution that religious undergraduate biology students may hold, and examines the impact that those definitions of evolution have on multiple outcome variables. In this study, we found that among the most religious students, those who thought evolution is atheistic were less accepting of evolution, less comfortable learning evolution, and perceived greater conflict between their personal religious beliefs and evolution than those who thought evolution is agnostic.
ContributorsDunlop, Hayley Marie (Author) / Brownell, Sara (Thesis director) / Collins, James (Committee member) / Barnes, M. Elizabeth (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133704-Thumbnail Image.png
Description
In response to a national call within STEM to increase diversity within the sciences, there has been a growth in science education research aimed at increasing participation of underrepresented groups in science, such as women and ethnic/racial minorities. However, an underexplored underrepresented group in science are religious students. Though 82%

In response to a national call within STEM to increase diversity within the sciences, there has been a growth in science education research aimed at increasing participation of underrepresented groups in science, such as women and ethnic/racial minorities. However, an underexplored underrepresented group in science are religious students. Though 82% of the United States population is religiously affiliated, only 52% of scientists are religious (Pew, 2009). Even further, only 32% of biologists are religious, with 25% identifying as Christian (Pew, 2009; Ecklund, 2007). One reason as to why Christian individuals are underrepresented in biology is because faculty may express biases that affect students' ability to persist in the field of biology. In this study, we explored how revealing a Christian student's religious identity on science graduate application would impact faculty's perception of the student during the biology graduate application process. We found that faculty were significantly more likely to perceive the student who revealed their religious identity to be less competent, hirable, likeable, and faculty would be less likely to mentor the student. Our study informs upon possible reasons as to why there is an underrepresentation of Christians in science. This further suggests that bias against Christians must be addressed in order to avoid real-world, negative treatment of Christians in science.
ContributorsTruong, Jasmine Maylee (Author) / Brownell, Sara (Thesis director) / Gaughan, Monica (Committee member) / Barnes, Liz (Committee member) / School of Life Sciences (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134485-Thumbnail Image.png
Description
Learning student names has been promoted as an inclusive classroom practice, but it is unknown whether students value having their names known by an instructor. We explored this question in the context of a high-enrollment active-learning undergraduate biology course. Using surveys and semistructured interviews, we investigated whether students perceived that

Learning student names has been promoted as an inclusive classroom practice, but it is unknown whether students value having their names known by an instructor. We explored this question in the context of a high-enrollment active-learning undergraduate biology course. Using surveys and semistructured interviews, we investigated whether students perceived that instructors know their names, the importance of instructors knowing their names, and how instructors learned their names. We found that, while only 20% of students perceived their names were known in previous high-enrollment biology classes, 78% of students perceived that an instructor of this course knew their names. However, instructors only knew 53% of names, indicating that instructors do not have to know student names in order for students to perceive that their names are known. Using grounded theory, we identified nine reasons why students feel that having their names known is important. When we asked students how they perceived instructors learned their names, the most common response was instructor use of name tents during in-class discussion. These findings suggest that students can benefit from perceiving that instructors know their names and name tents could be a relatively easy way for students to think that instructors know their names. Academic self-concept is one's perception of his or her ability in an academic domain compared to other students. As college biology classrooms transition from lecturing to active learning, students interact more with each other and are likely comparing themselves more to students in the class. Student characteristics, such as gender and race/ethnicity, can impact the level of academic self-concept, however this has been unexplored in the context of undergraduate biology. In this study, we explored whether student characteristics can affect academic self-concept in the context of a college physiology course. Using a survey, students self-reported how smart they perceived themselves in the context of physiology compared to the whole class and compared to the student they worked most closely with in class. Using logistic regression, we found that males and native English speakers had significantly higher academic self-concept compared to the whole class compared with females and non-native English speakers, respectively. We also found that males and non-transfer students had significantly higher academic self-concept compared to the student they worked most closely with in class compared with females and transfer students, respectively. Using grounded theory, we identified ten distinct factors that influenced how students determined whether they are more or less smart than their groupmate. Finally, we found that students were more likely to report participating less than their groupmate if they had a lower academic self-concept. These findings suggest that student characteristics can influence students' academic self-concept, which in turn may influence their participation in small group discussion.
ContributorsKrieg, Anna Florence (Author) / Brownell, Sara (Thesis director) / Stout, Valerie (Committee member) / Cooper, Katelyn (Committee member) / School of Life Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135232-Thumbnail Image.png
Description
Course-Based Undergraduate Research Experiences, or CUREs have become an increasingly popular way to integrate research opportunities into the undergraduate biology curriculum. Unlike traditional cookbook labs which provide students with a set experimental design and known outcome, CUREs offer students the opportunity to participate in novel and interesting research that is

Course-Based Undergraduate Research Experiences, or CUREs have become an increasingly popular way to integrate research opportunities into the undergraduate biology curriculum. Unlike traditional cookbook labs which provide students with a set experimental design and known outcome, CUREs offer students the opportunity to participate in novel and interesting research that is of interest to the greater biology community. While CUREs have been championed as a way to provide more students with the opportunity to experience, it is unclear whether students benefit differently from participating in different CURE with different structural elements. In this study we focused in on one proposed element of a CURE, collaboration, to determine whether student's perception of this concept change over the course of a CURE and whether it differs among students enrolled in different CUREs. We analyzed pre and post open-ended surveys asking the question "Why might collaboration be important in science?" in two CUREs with different structures of collaboration. We also compared CURE student responses to the responses of senior honors thesis students who had been conducting authentic research. Five themes emerged in response to students' conceptions of collaboration. Comparing two CURE courses, we found that students' conceptions of collaboration were varied within each individual CURE, as well as what students were leaving with compared to the other CURE course. Looking at how student responses compared between 5 different themes, including "Different Perspectives", "Validate/Verify Results", "Compare Results", "Requires Different Expertise", and "Compare results", students appeared to be thinking about collaboration in distinct different ways by lack of continuity in the amount of students discussing each of these among the classes. In addition, we found that student responses in each of the CURE courses were not significantly different for any of the themes except "Different Expertise" compared to the graduating seniors. However, due to the small (n) that the graduating seniors group had, 22, compared to each of the CURE classes composing of 155 and 98 students, this comparison must be taken in a preliminary manner. Overall, students thought differently about collaboration between different CUREs. Still, a gap filling what it means to "collaborate", and whether the structures of CUREs are effective to portray collaboration are still necessary to fully elaborate on this paper's findings.
ContributorsWassef, Cyril Alexander (Author) / Brownell, Sara (Thesis director) / Stout, Valerie (Committee member) / Cooper, Katelyn (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05