Matching Items (62)
166652-Thumbnail Image.png
Description
Adaptive capacity to climate change is the ability of a system to mitigate or take advantage of climate change effects. Research on adaptive capacity to climate change suffers fragmentation. This is partly because there is no clear consensus around precise definitions of adaptive capacity. The aim of this thesis is

Adaptive capacity to climate change is the ability of a system to mitigate or take advantage of climate change effects. Research on adaptive capacity to climate change suffers fragmentation. This is partly because there is no clear consensus around precise definitions of adaptive capacity. The aim of this thesis is to place definitions of adaptive capacity into a formal framework. I formalize adaptive capacity as a computational model written in the Idris 2 programming language. The model uses types to constrain how the elements of the model fit together. To achieve this, I analyze nine existing definitions of adaptive capacity. The focus of the analysis was on important factors that affect definitions and shared elements of the definitions. The model is able to describe an adaptive capacity study and guide a user toward concepts lacking clarity in the study. This shows that the model is useful as a tool to think about adaptive capacity. In the future, one could refine the model by forming an ontology for adaptive capacity. One could also review the literature more systematically. Finally, one might consider turning to qualitative research methods for reviewing the literature.
ContributorsManuel, Jason (Author) / Bazzi, Rida (Thesis director) / Pavlic, Theodore (Committee member) / Middel, Ariane (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description

With the increase in the severity of drought conditions in the Southwest region of the U.S. paired with rising temperatures, it is becoming increasingly important to look at the systems used to keep people cool in hot-arid cities like Tempe, Arizona. Outdoor misting systems are often deployed by businesses. These

With the increase in the severity of drought conditions in the Southwest region of the U.S. paired with rising temperatures, it is becoming increasingly important to look at the systems used to keep people cool in hot-arid cities like Tempe, Arizona. Outdoor misting systems are often deployed by businesses. These systems rely on the evaporative cooling effect of water. This study examines the relationship between misting droplet size, water usage, and thermal comfort using low-pressure misting systems, tested within hot and dry conditions representative of the arid U.S. southwest. A model misting system using three nozzle orifice sizes was set up in a controlled heat chamber environment (starting baseline conditions of 40°C air temperature and 15 % relative humidity). Droplet size was measured using water-reactive paper, while water use was determined based on weight-change measurements. These measurements were paired with temperature and humidity measurements observed in several locations around the chamber to allow for a spatial analysis. Thermal comfort is determined based on psychrometric changes (temperature and absolute humidity) within the room. On average, air temperatures decreased between 2 to 4°C depending on nozzle size and sensor location. The 0.4 mm nozzle had a decent spread across the heat chamber and balanced water usage and effectiveness well. Limitations within the study showed ventilation is important for an effective system, corroborating other studies findings and suggesting that adding air circulation could improve evaporation and comfort and thus effectiveness. Finally, visual cues, such as wetted surfaces, can signal businesses to change nozzle sizes and/or make additional modifications to the system area.

ContributorsJohnson, Trevor (Author) / Vanos, Jennifer (Thesis director) / Middel, Ariane (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
193043-Thumbnail Image.png
Description
The measurement of the radiation and convection that the human body experiences are important for ensuring safety in extreme heat conditions. The radiation from the surroundings on the human body is most often measured using globe or cylindrical radiometers. The large errors stemming from differences in internal and exterior temperatures

The measurement of the radiation and convection that the human body experiences are important for ensuring safety in extreme heat conditions. The radiation from the surroundings on the human body is most often measured using globe or cylindrical radiometers. The large errors stemming from differences in internal and exterior temperatures and indirect estimation of convection can be resolved by simultaneously using three cylindrical radiometers (1 cm diameter, 9 cm height) with varying surface properties and internal heating. With three surface balances, the three unknowns (heat transfer coefficient, shortwave, and longwave radiation) can be solved for directly. As compared to integral radiation measurement technique, however, the bottom mounting using a wooden-dowel of the three-cylinder radiometers resulted in underestimated the total absorbed radiation. This first part of this thesis focuses on reducing the size of the three-cylinder radiometers and an alternative mounting that resolves the prior issues. In particular, the heat transfer coefficient in laminar wind tunnel with wind speed of 0.25 to 5 m/s is measured for six polished, heated cylinders with diameter of 1 cm and height of 1.5 to 9 cm mounted using a wooden dowel. For cylinders with height of 6 cm and above, the heat transfer coefficients are independent of the height and agree with the Hilpert correlation for infinitely long cylinder. Subsequently, a side-mounting for heated 6 cm tall cylinder with top and bottom metallic caps is developed and tested within the wind tunnel. The heat transfer coefficient is shown to be independent of the flow-side mounting and in agreement with the Hilpert correlation. The second part of this thesis explores feasibility of employing the three-cylinder concept to measuring all air-flow parameters relevant to human convection including mean wind speed, turbulence intensity and length scale. Heated cylinders with same surface properties but varying diameters are fabricated. Uniformity of their exterior temperature, which is fundamental to the three-cylinder anemometer concept, is tested during operation using infrared camera. To provide a lab-based method to measure convection from the cylinders in turbulent flow, several designs of turbulence-generating fractal grids are laser-cut and introduced into the wind tunnel.
ContributorsGupta, Mahima (Author) / Rykaczewski, Konrad (Thesis advisor) / Pathikonda, Gokul (Thesis advisor) / Middel, Ariane (Committee member) / Arizona State University (Publisher)
Created2024
156599-Thumbnail Image.png
Description
The global increase in urbanization has raised questions about urban sustainability to which multiple research communities have entered. Those communities addressing interest in the urban heat island (UHI) effect and extreme temperatures include land system science, urban/landscape ecology, and urban climatology. General investigations of UHI have focused primarily on land

The global increase in urbanization has raised questions about urban sustainability to which multiple research communities have entered. Those communities addressing interest in the urban heat island (UHI) effect and extreme temperatures include land system science, urban/landscape ecology, and urban climatology. General investigations of UHI have focused primarily on land surface and canopy layer air temperatures. The surface temperature is of prime importance to UHI studies because of its central rule in the surface energy balance, direct effects on air temperature, and outdoor thermal comfort. Focusing on the diurnal surface temperature variations in Phoenix, Arizona, especially on the cool (green space) island effect and the surface heat island effect, the dissertation develops three research papers that improve the integration among the abovementioned sub-fields. Specifically, these papers involve: (1) the quantification and modeling of the diurnal cooling benefits of green space; (2) the optimization of green space locations to reduce the surface heat island effect in daytime and nighttime; and, (3) an evaluation of the effects of vertical urban forms on land surface temperature using Google Street View. These works demonstrate that the pattern of new green spaces in central Phoenix could be optimized such that 96% of the maximum daytime and nighttime cooling benefits would be achieved, and that Google Street View data offers an alternative to other data, providing the vertical dimensions of land-cover for addressing surface temperature impacts, increasing the model accuracy over the use of horizontal land-cover data alone. Taken together, the dissertation points the way towards the integration of research directions to better understand the consequences of detailed land conditions on temperatures in urban areas, providing insights for urban designs to alleviate these extremes.
ContributorsZhang, Yujia (Author) / Turner, Billie (Thesis advisor) / Murray, Alan T. (Committee member) / Myint, Soe W (Committee member) / Middel, Ariane (Committee member) / Arizona State University (Publisher)
Created2018
Description
The ability to tolerate bouts of oxygen deprivation varies tremendously across the animal kingdom. Adult humans from different regions show large variation in tolerance to hypoxia; additionally, it is widely known that neonatal mammals are much more tolerant to anoxia than their adult counterparts, including in humans. Drosophila melanogaster are

The ability to tolerate bouts of oxygen deprivation varies tremendously across the animal kingdom. Adult humans from different regions show large variation in tolerance to hypoxia; additionally, it is widely known that neonatal mammals are much more tolerant to anoxia than their adult counterparts, including in humans. Drosophila melanogaster are very anoxia-tolerant relative to mammals, with adults able to survive 12 h of anoxia, and represent a well-suited model for studying anoxia tolerance. Drosophila live in rotting, fermenting media and a result are more likely to experience environmental hypoxia; therefore, they could be expected to be more tolerant of anoxia than adults. However, adults have the capacity to survive anoxic exposure times ~8 times longer than larvae. This dissertation focuses on understanding the mechanisms responsible for variation in survival from anoxic exposure in the genetic model organism, Drosophila melanogaster, focused in particular on effects of developmental stage (larval vs. adults) and within-population variation among individuals.

Vertebrate studies suggest that surviving anoxia requires the maintenance of ATP despite the loss of aerobic metabolism in a manner that prevents a disruption of ionic homeostasis. Instead, the abilities to maintain a hypometabolic state with low ATP and tolerate large disturbances in ionic status appear to contribute to the higher anoxia tolerance of adults. Furthermore, metabolomics experiments support this notion by showing that larvae had higher metabolic rates during the initial 30 min of anoxia and that protective metabolites were upregulated in adults but not larvae. Lastly, I investigated the genetic variation in anoxia tolerance using a genome wide association study (GWAS) to identify target genes associated with anoxia tolerance. Results from the GWAS also suggest mechanisms related to protection from ionic and oxidative stress, in addition to a protective role for immune function.
ContributorsCampbell, Jacob B (Author) / Harrison, Jon F. (Thesis advisor) / Gadau, Juergen (Committee member) / Call, Gerald B (Committee member) / Sweazea, Karen L (Committee member) / Rosenberg, Michael S. (Committee member) / Arizona State University (Publisher)
Created2018
156764-Thumbnail Image.png
Description
Amongst the most studied of the social insects, the honey bee has a prominent place due to its economic importance and influence on human societies. Honey bee colonies can have over 50,000 individuals, whose activities are coordinated by chemical signals called pheromones. Because these pheromones are secreted from various exocrine

Amongst the most studied of the social insects, the honey bee has a prominent place due to its economic importance and influence on human societies. Honey bee colonies can have over 50,000 individuals, whose activities are coordinated by chemical signals called pheromones. Because these pheromones are secreted from various exocrine glands, the proper development and function of these glands are vital to colony dynamics. In this thesis, I present a study of the developmental ontogeny of the exocrine glands found in the head of the honey bee. In Chapter 2, I elucidate how the larval salivary gland transitions to an adult salivary gland through apoptosis and cell growth, differentiation and migration. I also explain the development of the hypopharyngeal and the mandibular gland using apoptotic markers and cytoskeletal markers like tubulin and actin. I explain the fundamental developmental plan for the formation of the glands and show that apoptosis plays an important role in the transformation toward an adult gland.
ContributorsNath, Rachna (Author) / Gadau, Juergen (Thesis advisor) / Rawls, Alan (Committee member) / Harrison, Jon (Committee member) / Arizona State University (Publisher)
Created2018
157548-Thumbnail Image.png
Description
Urban-induced heating is a challenge to the livability and health of city dwellers. It is a complex issue that many cities are facing, and a more urgent hazard in hot urban deserts (HUDs) than elsewhere due to already high temperatures and aridity. The challenge compounds in the absence of more

Urban-induced heating is a challenge to the livability and health of city dwellers. It is a complex issue that many cities are facing, and a more urgent hazard in hot urban deserts (HUDs) than elsewhere due to already high temperatures and aridity. The challenge compounds in the absence of more localized heat mitigation understanding. In addition, over-reliance on evidence from temperate regions is disconnected from the actualities of extreme bioclimatic dynamics found in HUDs. This dissertation is an integration of a series of studies that inform urban climate relationships specific to HUDs. This three-paper dissertation demonstrates heat mitigation aspirational goals from actualities, depicts local urban thermal drivers in Kuwait, and then tests morphological sensitivity of selected thermal modulation strategies in one neighborhood in Kuwait City.

The first paper is based on a systematic literature review where evidence from morphological mitigation strategies in HUDs were critically reviewed, synthesized and integrated. Metrics, measurements, and methods were extracted to examine the applicability of the different strategies, and a content synthesis identified the levels of strategy success. Collective challenges and uncertainties were interpreted to compare aspirational goals from actualities of morphological mitigation strategies.

The second paper unpacks the relationship of urban morphological attributes in influencing thermal conditions to assess latent magnitudes of heat amelioration strategies. Mindful of the challenges presented in the first study, a 92-day summer field-measurement campaign captured system dynamics of urban thermal stimuli within sub-diurnal phenomena. A composite data set of sub-hourly air temperature measurements with sub-meter morphological attributes was built, statistically analyzed, and modeled. Morphological mediation effects were found to vary hourly with different patterns under varying weather conditions in non-linear associations. Results suggest mitigation interventions be investigated and later tested on a site- use and time-use basis.

The third paper concludes with a simulation-based study to conform on the collective findings of the earlier studies. The microclimate model ENVI-met 4.4, combined with field measurements, was used to simulate the effect of rooftop shade-sails in cooling the near ground thermal environment. Results showed significant cooling effects and thus presented a novel shading approach that challenges orthodox mitigation strategies in HUDs.
ContributorsAlKhaled, Saud R A H (Author) / Coseo, Paul (Thesis advisor) / Brazel, Anthony (Thesis advisor) / Middel, Ariane (Committee member) / Cheng, Chingwen (Committee member) / Arizona State University (Publisher)
Created2019
154644-Thumbnail Image.png
Description
During summer 2014, a study was conducted as part of the Landscape Architecture Foundation Case Study Investigation to analyze features of three sustainably designed landscapes. Each project was located in a southwest desert city: Civic Space Park in Phoenix, AZ, the Pete V. Domenici US Courthouse Sustainable Landscape Retrofit in

During summer 2014, a study was conducted as part of the Landscape Architecture Foundation Case Study Investigation to analyze features of three sustainably designed landscapes. Each project was located in a southwest desert city: Civic Space Park in Phoenix, AZ, the Pete V. Domenici US Courthouse Sustainable Landscape Retrofit in Albuquerque, NM, and George "Doc" Cavalliere Park in Scottsdale, AZ. The principal components of each case study were performance benefits that quantified ongoing ecosystem services. Performance benefits were developed from data provided by the designers and collected by the research team. The functionality of environmental, social, and economic sustainable features was evaluated. In southwest desert cities achieving performance benefits such as microclimate cooling often come at the cost of water conservation. In each of these projects such tradeoffs were balanced by prioritizing the project goals and constraints.

During summer 2015, a study was conducted to characterize effects of tree species and shade structures on outdoor human thermal comfort under hot, arid conditions. Motivating the research was the hypothesis that tree species and shade structures will vary in their capacity to improve thermal comfort due to their respective abilities to attenuate solar radiation. Micrometeorological data was collected in full sun and under shade of six landscape tree species and park ramadas in Phoenix, AZ during pre-monsoon summer afternoons. The six landscape tree species included: Arizona ash (Fraxinus velutina Torr.), Mexican palo verde (Parkinsonia aculeata L.), Aleppo pine (Pinus halepensis Mill.), South American mesquite (Prosopis spp. L.), Texas live oak (Quercus virginiana for. fusiformis Mill.), and Chinese elm (Ulmus parvifolia Jacq.). Results showed that the tree species and ramadas were not similarly effective at improving thermal comfort, represented by physiologically equivalent temperature (PET). The difference between PET in full sun and under shade was greater under Fraxinus and Quercus than under Parkinsonia, Prosopis, and ramadas by 2.9-4.3 °C. Radiation was a significant driver of PET (p<0.0001, R2=0.69) and with the exception of ramadas, lower radiation corresponded with lower PET. Variations observed in this study suggest selecting trees or structures that attenuate the most solar radiation is a potential strategy for optimizing PET.
ContributorsColter, Kaylee (Author) / Martin, Chris (Thesis advisor) / Coseo, Paul (Committee member) / Middel, Ariane (Committee member) / Arizona State University (Publisher)
Created2016
153154-Thumbnail Image.png
Description
During the 1960s, the long-standing idea that traits or behaviors could be

explained by natural selection acting on traits that persisted "for the good of the group" prompted a series of debates about group-level selection and the effectiveness with which natural selection could act at or across multiple levels of biological

During the 1960s, the long-standing idea that traits or behaviors could be

explained by natural selection acting on traits that persisted "for the good of the group" prompted a series of debates about group-level selection and the effectiveness with which natural selection could act at or across multiple levels of biological organization. For some this topic remains contentious, while others consider the debate settled, even while disagreeing about when and how resolution occurred, raising the question: "Why have these debates continued?"

Here I explore the biology, history, and philosophy of the possibility of natural selection operating at levels of biological organization other than the organism by focusing on debates about group-level selection that have occurred since the 1960s. In particular, I use experimental, historical, and synthetic methods to review how the debates have changed, and whether different uses of the same words and concepts can lead to different interpretations of the same experimental data.

I begin with the results of a group-selection experiment I conducted using the parasitoid wasp Nasonia, and discuss how the interpretation depends on how one conceives of and defines a "group." Then I review the history of the group selection controversy and argue that this history is best interpreted as multiple, interrelated debates rather than a single continuous debate. Furthermore, I show how the aspects of these debates that have changed the most are related to theoretical content and empirical data, while disputes related to methods remain largely unchanged. Synthesizing this material, I distinguish four different "approaches" to the study of multilevel selection based on the questions and methods used by researchers, and I use the results of the Nasonia experiment to discuss how each approach can lead to different interpretations of the same experimental data. I argue that this realization can help to explain why debates about group and multilevel selection have persisted for nearly sixty years. Finally, the conclusions of this dissertation apply beyond evolutionary biology by providing an illustration of how key concepts can change over time, and how failing to appreciate this fact can lead to ongoing controversy within a scientific field.
ContributorsDimond, Christopher C (Author) / Collins, James P. (Thesis advisor) / Gadau, Juergen (Committee member) / Laubichler, Manfred (Committee member) / Armendt, Brad (Committee member) / Lynch, John (Committee member) / Arizona State University (Publisher)
Created2014
156201-Thumbnail Image.png
Description
For interspecific mutualisms, the behavior of one partner can influence the fitness of the other, especially in the case of symbiotic mutualisms where partners live in close physical association for much of their lives. Behavioral effects on fitness may be particularly important if either species in these long-term relationships displays

For interspecific mutualisms, the behavior of one partner can influence the fitness of the other, especially in the case of symbiotic mutualisms where partners live in close physical association for much of their lives. Behavioral effects on fitness may be particularly important if either species in these long-term relationships displays personality. Animal personality is defined as repeatable individual differences in behavior, and how correlations among these consistent traits are structured is termed behavioral syndromes. Animal personality has been broadly documented across the animal kingdom but is poorly understood in the context of mutualisms. My dissertation focuses on the structure, causes, and consequences of collective personality in Azteca constructor colonies that live in Cecropia trees, one of the most successful and prominent mutualisms of the neotropics. These pioneer plants provide hollow internodes for nesting and nutrient-rich food bodies; in return, the ants provide protection from herbivores and encroaching vines. I first explored the structure of the behavioral syndrome by testing the consistency and correlation of colony-level behavioral traits under natural conditions in the field. Traits were both consistent within colonies and correlated among colonies revealing a behavioral syndrome along a docile-aggressive axis. Host plants of more active, aggressive colonies had less leaf damage, suggesting a link between a colony personality and host plant health. I then studied how aspects of colony sociometry are intertwined with their host plants by assessing the relationship among plant growth, colony growth, colony structure, ant morphology, and colony personality. Colony personality was independent of host plant measures like tree size, age, volume. Finally, I tested how colony personality influenced by soil nutrients by assessing personality in the field and transferring colonies to plants the greenhouse under different soil nutrient treatments. Personality was correlated with soil nutrients in the field but was not influenced by soil nutrient treatment in the greenhouse. This suggests that soil nutrients interact with other factors in the environment to structure personality. This dissertation demonstrates that colony personality is an ecologically relevant phenomenon and an important consideration for mutualism dynamics.
ContributorsMarting, Peter (Author) / Pratt, Stephen C (Thesis advisor) / Wcislo, William T (Committee member) / Hoelldobler, Bert (Committee member) / Fewell, Jennifer H (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2018