Matching Items (47)
127876-Thumbnail Image.png
Description

The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang–Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past

The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang–Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4) matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.

ContributorsBelitsky, Andrei (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-08-31
154376-Thumbnail Image.png
Description
The muon problem of flavor physics presents a rich opportunity to study beyond standard model physics. The as yet undiscovered bound state (μ+μ-), called true muonium, presents a unique opportunity to investigate the muon problem. The near-future experimental searches for true muonium will produce it relativistically, preventing the easy application

The muon problem of flavor physics presents a rich opportunity to study beyond standard model physics. The as yet undiscovered bound state (μ+μ-), called true muonium, presents a unique opportunity to investigate the muon problem. The near-future experimental searches for true muonium will produce it relativistically, preventing the easy application of non-relativistic quantum mechanics. In this thesis, quantum field theory methods based on light-front quantization are used to solve an effective Hamiltonian for true muonium in the Fock space of |μ+μ-> , |μ+μ-γ> , |e+e->, |e+e-γ>, |τ+τ-> , and |τ+τ-γ> . To facilitate these calculations a new parallel code, True Muonium Solver With Front-Form Techniques (TMSWIFT), has been developed. Using this code, numerical results for the wave functions, energy levels, and decay constants of true muonium have been obtained for a range of coupling constants α. Work is also presented for deriving the effective interaction arising from the |γγ sector’s inclusion into the model.
ContributorsLamm, Henry (Author) / Lebed, Richard F (Thesis advisor) / Belitsky, Andrei (Committee member) / Alarcon, Ricardo (Committee member) / Easson, Damien (Committee member) / Arizona State University (Publisher)
Created2016
128229-Thumbnail Image.png
Description

In this paper we study the four-point correlation function of the energy–momentum supermultiplet in theories with N = 4 superconformal symmetry in four dimensions. We present a compact form of all component correlators as an invariant of a particular abelian subalgebra of the N = 4 superconformal algebra. This invariant

In this paper we study the four-point correlation function of the energy–momentum supermultiplet in theories with N = 4 superconformal symmetry in four dimensions. We present a compact form of all component correlators as an invariant of a particular abelian subalgebra of the N = 4 superconformal algebra. This invariant is unique up to a single function of the conformal cross-ratios which is fixed by comparison with the correlation function of the lowest half-BPS scalar operators. Our analysis is independent of the dynamics of a specific theory, in particular it is valid in N = 4 super Yang–Mills theory for any value of the coupling constant. We discuss in great detail a subclass of component correlators, which is a crucial ingredient for the recent study of charge-flow correlations in conformal field theories. We compute the latter explicitly and elucidate the origin of the interesting relations among different types of flow correlations previously observed in arXiv:1309.1424.

ContributorsBelitsky, Andrei (Author) / Hohenegger, S. (Author) / Korchemsky, G. P. (Author) / Sokatchev, E. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-01-07
128710-Thumbnail Image.png
Description

Deforestation in Myanmar has recently attracted much attention worldwide. This study examined spatio-temporal patterns of deforestation and forest carbon flux in Myanmar from 2001 to 2010 and environmental impacts at the regional scale using land products of the Moderate Resolution Imaging Spectroradiometer (MODIS). The results suggest that the total deforestation

Deforestation in Myanmar has recently attracted much attention worldwide. This study examined spatio-temporal patterns of deforestation and forest carbon flux in Myanmar from 2001 to 2010 and environmental impacts at the regional scale using land products of the Moderate Resolution Imaging Spectroradiometer (MODIS). The results suggest that the total deforestation area in Myanmar was 21,178.8 km2, with an annual deforestation rate of 0.81%, and that the total forest carbon release was 20.06 million tons, with an annual rate of 0.37%. Mangrove forests had the highest deforestation and carbon release rates, and deciduous forests had both the largest deforestation area and largest amount of carbon release. During the study period, the south and southwestern regions of Myanmar, especially Ayeyarwady and Rakhine, were deforestation hotspots (i.e., the highest deforestation and carbon release rates occurred in these regions). Deforestation caused significant carbon release, reduced evapotranspiration (ET), and increased land surface temperatures (LSTs) in deforested areas in Myanmar during the study period. Constructive policy recommendations are put forward based on these research results.

ContributorsWang, Chuyuan (Author) / Myint, Soe (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-09-02
128653-Thumbnail Image.png
Description

This paper reviews how remotely sensed data have been used to understand the impact of urbanization on global environmental change. We describe how these studies can support the policy and science communities’ increasing need for detailed and up-to-date information on the multiple dimensions of cities, including their social, biological, physical,

This paper reviews how remotely sensed data have been used to understand the impact of urbanization on global environmental change. We describe how these studies can support the policy and science communities’ increasing need for detailed and up-to-date information on the multiple dimensions of cities, including their social, biological, physical, and infrastructural characteristics. Because the interactions between urban and surrounding areas are complex, a synoptic and spatial view offered from remote sensing is integral to measuring, modeling, and understanding these relationships. Here we focus on three themes in urban remote sensing science: mapping, indices, and modeling. For mapping we describe the data sources, methods, and limitations of mapping urban boundaries, land use and land cover, population, temperature, and air quality. Second, we described how spectral information is manipulated to create comparative biophysical, social, and spatial indices of the urban environment. Finally, we focus how the mapped information and indices are used as inputs or parameters in models that measure changes in climate, hydrology, land use, and economics.

ContributorsWentz, Elizabeth (Author) / Anderson, Sharolyn (Author) / Fragkias, Michail (Author) / Netzband, Maik (Author) / Mesev, Victor (Author) / Myint, Soe (Author) / Quattrochi, Dale (Author) / Rahman, Atiqur (Author) / Seto, Karen C. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-04-30
128657-Thumbnail Image.png
Description

This study examines the spatial and temporal patterns of the surface urban heat island (SUHI) intensity in the Phoenix metropolitan area and the relationship with land use land cover (LULC) change between 2000 and 2014. The objective is to identify specific regions in Phoenix that have been increasingly heated and

This study examines the spatial and temporal patterns of the surface urban heat island (SUHI) intensity in the Phoenix metropolitan area and the relationship with land use land cover (LULC) change between 2000 and 2014. The objective is to identify specific regions in Phoenix that have been increasingly heated and cooled to further understand how LULC change influences the SUHI intensity. The data employed include MODerate-resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) 8-day composite June imagery, and classified LULC maps generated using 2000 and 2014 Landsat imagery. Results show that the regions that experienced the most significant LST changes during the study period are primarily on the outskirts of the Phoenix metropolitan area for both daytime and nighttime. The conversion to urban, residential, and impervious surfaces from all other LULC types has been identified as the primary cause of the UHI effect in Phoenix. Vegetation cover has been shown to significantly lower LST for both daytime and nighttime due to its strong cooling effect by producing more latent heat flux and less sensible heat flux. We suggest that urban planners, decision-makers, and city managers formulate new policies and regulations that encourage residential, commercial, and industrial developers to include more vegetation when planning new construction.

ContributorsWang, Chuyuan (Author) / Myint, Soe (Author) / Wang, Zhi-Hua (Author) / Song, Jiyun (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-26
128663-Thumbnail Image.png
Description

The urban heat island (UHI) phenomenon is a significant worldwide problem caused by rapid population growth and associated urbanization. The UHI effect exacerbates heat waves during the summer, increases energy and water consumption, and causes the high risk of heat-related morbidity and mortality. UHI mitigation efforts have increasingly relied on

The urban heat island (UHI) phenomenon is a significant worldwide problem caused by rapid population growth and associated urbanization. The UHI effect exacerbates heat waves during the summer, increases energy and water consumption, and causes the high risk of heat-related morbidity and mortality. UHI mitigation efforts have increasingly relied on wisely designing the urban residential environment such as using high albedo rooftops, green rooftops, and planting trees and shrubs to provide canopy coverage and shading. Thus, strategically designed residential rooftops and their surrounding landscaping have the potential to translate into significant energy, long-term cost savings, and health benefits. Rooftop albedo, material, color, area, slope, height, aspect and nearby landscaping are factors that potentially contribute. To extract, derive, and analyze these rooftop parameters and outdoor landscaping information, high resolution optical satellite imagery, LIDAR (light detection and ranging) point clouds and thermal imagery are necessary. Using data from the City of Tempe AZ (a 2010 population of 160,000 people), we extracted residential rooftop footprints and rooftop configuration parameters from airborne LIDAR point clouds and QuickBird satellite imagery (2.4 m spatial resolution imagery). Those parameters were analyzed against surface temperature data from the MODIS/ASTER airborne simulator (MASTER). MASTER images provided fine resolution (7 m) surface temperature data for residential areas during daytime and night time. Utilizing these data, ordinary least squares (OLS) regression was used to evaluate the relationships between residential building rooftops and their surface temperature in urban environment. The results showed that daytime rooftop temperature was closely related to rooftop spectral attributes, aspect, slope, and surrounding trees. Night time temperature was only influenced by rooftop spectral attributes and slope.

ContributorsZhao, Qunshan (Author) / Myint, Soe (Author) / Wentz, Elizabeth (Author) / Fan, Chao (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-09-18