Matching Items (395)
Filtering by

Clear all filters

129276-Thumbnail Image.png
Description

As awareness of traumatic brain injury (TBI) increases, the need to detect mild forms and distinguish between the different severities of TBI becomes more apparent. The goal of this work is to develop a point-of-care sensor to detect whole blood biomarkers for rapid and sensitive diagnosis of TBI severity. Presented

As awareness of traumatic brain injury (TBI) increases, the need to detect mild forms and distinguish between the different severities of TBI becomes more apparent. The goal of this work is to develop a point-of-care sensor to detect whole blood biomarkers for rapid and sensitive diagnosis of TBI severity. Presented herein is the enzymatic detection of norepinephrine through the use of immobilization chemistry and impedance techniques. Sustained elevation of norepinephrine concentrations in the blood has been correlated to negative long-term outcomes in TBI cases, often resulting in permanent cognitive or physical deficits.

Novel analysis techniques have been used to identify an optimal binding frequency (371.1 Hz) of norepinephrine to the immobilized enzyme on a gold disk electrode. This form of analysis yielded a logarithmic fit characterized by exceptional responsivity (20.89 Ω/pgmL-1), reproducibility (R2 = 0.96), and lower limit of detection (98 pg/mL) first in purified samples, then in rabbit whole blood solutions. Once the optimal binding frequency was determined, the preliminary use of an impedance-time technique was attempted in this work. This technique more closely resembles the amperometric detection method used in commercial self-monitoring blood glucose meters, allowing for continuous or instantaneous measurement of blood borne biomarkers without compromising sensitivity. Future directions include exploration of simultaneous multi-marker detection with the impedance-time technique and experimentation with novel mesoporous materials to filter large blood components.

ContributorsHaselwood, Brittney (Author) / LaBelle, Jeffrey (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-05-15
129277-Thumbnail Image.png
Description

Electroplating of aluminum (Al) on silicon (Si) substrates has been demonstrated in an above-room-temperature ionic liquid for the metallization of wafer-Si solar cells. The electrolyte was prepared by mixing anhydrous aluminum chloride and 1-ethyl-3-methylimidazolium tetrachloroaluminate. The plating was carried out by means of galvanostatic electrolysis. The structural and compositional properties

Electroplating of aluminum (Al) on silicon (Si) substrates has been demonstrated in an above-room-temperature ionic liquid for the metallization of wafer-Si solar cells. The electrolyte was prepared by mixing anhydrous aluminum chloride and 1-ethyl-3-methylimidazolium tetrachloroaluminate. The plating was carried out by means of galvanostatic electrolysis. The structural and compositional properties of the Al deposits were characterized, and the sheet resistance of the deposits revealed the effects of pre-bake conditions, deposition temperature, and post-deposition annealing conditions. It was found that dense, adherent Al deposits with resistivity in the high 10-6 Ω-cm range can be reproducibly obtained directly on Si substrates.

ContributorsSun, Wen-Cheng (Author) / Han, Xiaofei (Author) / Tao, Meng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-11-30
129281-Thumbnail Image.png
Description

A CdZnTe/MgCdTe double-heterostructure (DH) consisting of a 3 μm thick Cd0.9946 Zn0.0054Te middle layer that is lattice-matched to an InSb substrate has been grown using molecular beam epitaxy. A long carrier lifetime of 3.4 × 102 ns has been demonstrated at room temperature, which is approximately three times as long as that of a

A CdZnTe/MgCdTe double-heterostructure (DH) consisting of a 3 μm thick Cd0.9946 Zn0.0054Te middle layer that is lattice-matched to an InSb substrate has been grown using molecular beam epitaxy. A long carrier lifetime of 3.4 × 102 ns has been demonstrated at room temperature, which is approximately three times as long as that of a CdTe/MgCdTe DH with identical layer thickness. This substantial improvement is due to the reduction in misfit dislocation density in the CdZnTe alloy. In contrast, a CdTe/MgCdTe DH with 3 μm thick CdTe layer grown on an InSb substrate exhibits a strain relaxation of ∼30%, which leads to a wider x-ray diffraction peak, a weaker integrated photoluminescence intensity, and a shorter minority carrier lifetime of 1.0 × 102 ns. These findings indicate that CdZnTe lattice-matched to InSb has great potential as applied to high-efficiency solar cells as well as virtual substrates for high-performance large-area HgCdTe focal plane arrays.

ContributorsLiu, Shi (Author) / Zhao, Xin-Hao (Author) / Campbell, Calli (Author) / DiNezza, Michael J. (Author) / Zhao, Yuan (Author) / Zhang, Yong-Hang (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129283-Thumbnail Image.png
Description

Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model)

Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera).

Created2015-01-01
129287-Thumbnail Image.png
Description

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into account of the collective contribution from all available scattering channels, we derive a universal formula for the Fano-resonance profile. We show that our formula bridges naturally the traditional Fano formulas with complex and real asymmetry parameters, indicating that the two types of formulas are fundamentally equivalent (except for an offset). The connection also reveals a clear footprint for the conductance resonance during a dephasing process. Therefore, the emergence of complex asymmetric parameter when fitting with experimental data needs to be properly interpreted. Furthermore, we have provided a theory for the width of the resonance, which relates explicitly the width to the degree of localization of the close-by eigenstates and the corresponding coupling matrices or the self-energies caused by the leads. Our work not only resolves the issue about the nature of the asymmetry parameter, but also provides deeper physical insights into the origin of Fano resonance. Since the only assumption in our treatment is that the transport can be described by the Green’s function formalism, our results are also valid for broad disciplines including scattering problems of electromagnetic waves, acoustics, and seismology.

ContributorsHuang, Liang (Author) / Lai, Ying-Cheng (Author) / Luo, Hong-Gang (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129292-Thumbnail Image.png
Description

A film-coupled metamaterial structure is numerically investigated for enhancing the light absorption in an ultrathin photovoltaic layer of crystalline gallium arsenide (GaAs). The top subwavelength concave grating and the bottom metallic film could not only effectively trap light with the help of wave interference and magnetic resonance effects excited above

A film-coupled metamaterial structure is numerically investigated for enhancing the light absorption in an ultrathin photovoltaic layer of crystalline gallium arsenide (GaAs). The top subwavelength concave grating and the bottom metallic film could not only effectively trap light with the help of wave interference and magnetic resonance effects excited above the bandgap, but also practically serve as electrical contacts for photon-generated charge collection. The energy absorbed by the active layer is greatly enhanced with the help of the film-coupled metamaterial structure, resulting in significant improvement on the short-circuit current density by three times over a free-standing GaAs layer at the same thickness. The performance of the proposed light trapping structure is demonstrated to be little affected by the grating ridge width considering the geometric tolerance during fabrication. The optical absorption at oblique incidences also shows direction-insensitive behavior, which is highly desired for efficiently converting off-normal sunlight to electricity. The results would facilitate the development of next-generation ultrathin solar cells with lower cost and higher efficiency.

ContributorsWang, Hao (Author) / Wang, Liping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-01
Description

Effective DNA translocation into nanochannels is critical for advancing genome mapping and future single-molecule DNA sequencing technologies. We present the design and hydrodynamic study of a diamond-shaped gradient pillar array connected to nanochannels for enhancing the success of DNA translocation events. Single-molecule fluorescence imaging is utilized to interrogate the hydrodynamic

Effective DNA translocation into nanochannels is critical for advancing genome mapping and future single-molecule DNA sequencing technologies. We present the design and hydrodynamic study of a diamond-shaped gradient pillar array connected to nanochannels for enhancing the success of DNA translocation events. Single-molecule fluorescence imaging is utilized to interrogate the hydrodynamic interactions of the DNA with this unique structure, evaluate key DNA translocation parameters, including speed, extension, and translocation time, and provide a detailed mapping of the translocation events in nanopillar arrays coupled with 10 and 50 μm long channels. Our analysis reveals the important roles of diamond-shaped nanopillars in guiding DNA into as small as 30 nm channels with minimized clogging, stretching DNA to nearly 100% of their dyed contour length, inducing location-specific straddling of DNA at nanopillar interfaces, and modulating DNA speeds by pillar geometries. Importantly, all critical features down to 30 nm wide nanochannels are defined using standard photolithography and fabrication processes, a feat aligned with the requirement of high-volume, low-cost production.

ContributorsWang, Chao (Author) / Bruce, Robert L. (Author) / Duch, Elizabeth A. (Author) / Patel, Jyotica V. (Author) / Smith, Joshua T. (Author) / Astier, Yann (Author) / Wunsch, Benjamin H. (Author) / Meshram, Siddharth (Author) / Galan, Armand (Author) / Scerbo, Chris (Author) / Pereira, Michael A. (Author) / Wang, Deqiang (Author) / Colgan, Evan G. (Author) / Lin, Qinghuang (Author) / Stolovitzky, Gustavo (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-01
129294-Thumbnail Image.png
Description

We studied the optical properties of InAs/GaAs0.83Sb0.17 quantum dots (QDs), with varying silicon delta-doping position (spatial distance, d = 0.5, 1, and 2 nm), using photoluminescence (PL) measurements. Compared with the undoped QDs, the PL peak energies of the ground state (GS) emissions for the doped QDs with d =

We studied the optical properties of InAs/GaAs0.83Sb0.17 quantum dots (QDs), with varying silicon delta-doping position (spatial distance, d = 0.5, 1, and 2 nm), using photoluminescence (PL) measurements. Compared with the undoped QDs, the PL peak energies of the ground state (GS) emissions for the doped QDs with d = 0.5 and 2 nm were found to be greatly blueshifted by ~31 meV, which was much larger than that for the doped QDs with d = 1 nm. The radiative recombination rate of the GS emissions for the doped QDs with d = 1 nm was estimated to be slower than that for the other doped QDs at 10 K. The doped QDs with d = 1 nm showed the fastest redshift of the GS peak energy with temperature and lowest thermal activation energy (151 meV) of electrons among the QD samples. Further, the time-resolved PL data revealed that the average carrier lifetime (6.3 ns) in the doped QDs with d = 1 nm was longer even than that in the undoped QDs (5.5 ns) because of the weakened electron-hole wavefunction overlap by the V-shaped potential barrier in the doped QDs.

ContributorsKim, Yeongho (Author) / Ban, Keun-Yong (Author) / Kuciauskas, Darius (Author) / Dippo, Patricia C. (Author) / Honsberg, Christiana (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-03-01
129297-Thumbnail Image.png
Description

In this paper, we propose an efficient and scalable low rank matrix completion algorithm. The key idea is to extend the orthogonal matching pursuit method from the vector case to the matrix case. We further propose an economic version of our algorithm by introducing a novel weight updating rule to

In this paper, we propose an efficient and scalable low rank matrix completion algorithm. The key idea is to extend the orthogonal matching pursuit method from the vector case to the matrix case. We further propose an economic version of our algorithm by introducing a novel weight updating rule to reduce the time and storage complexity. Both versions are computationally inexpensive for each matrix pursuit iteration and find satisfactory results in a few iterations. Another advantage of our proposed algorithm is that it has only one tunable parameter, which is the rank. It is easy to understand and to use by the user. This becomes especially important in large-scale learning problems. In addition, we rigorously show that both versions achieve a linear convergence rate, which is significantly better than the previous known results. We also empirically compare the proposed algorithms with several state-of-the-art matrix completion algorithms on many real-world datasets, including the large-scale recommendation dataset Netflix as well as the MovieLens datasets. Numerical results show that our proposed algorithm is more efficient than competing algorithms while achieving similar or better prediction performance.

ContributorsWang, Zheng (Author) / Lai, Ming-Jun (Author) / Lu, Zhaosong (Author) / Fan, Wei (Author) / Davulcu, Hasan (Author) / Ye, Jieping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-11-30
129298-Thumbnail Image.png
Description

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due to the tremendous recent interest in two-dimensional Dirac materials. We investigate relativistic quantum AB rings threaded by a magnetic flux and find that PCs are extremely robust. Even for highly asymmetric rings that host fully developed classical chaos, the amplitudes of PCs are of the same order of magnitude as those for integrable rings, henceforth the term superpersistent currents (SPCs). A striking finding is that the SPCs can be attributed to a robust type of relativistic quantum states, i.e., Dirac whispering gallery modes (WGMs) that carry large angular momenta and travel along the boundaries. We propose an experimental scheme using topological insulators to observe and characterize Dirac WGMs and SPCs, and speculate that these features can potentially be the base for a new class of relativistic qubit systems. Our discovery of WGMs in relativistic quantum systems is remarkable because, although WGMs are common in photonic systems, they are relatively rare in electronic systems.

ContributorsXu, Hongya (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-03-11