Matching Items (1,570)
Filtering by

Clear all filters

135647-Thumbnail Image.png
Description
Clean water for drinking, food preparation, and bathing is essential for astronaut health and safety during long duration habitation of the International Space Station (ISS), including future missions to Mars. Despite stringent water treatment and recycling efforts on the ISS, it is impossible to completely prevent microbial contamination of onboard

Clean water for drinking, food preparation, and bathing is essential for astronaut health and safety during long duration habitation of the International Space Station (ISS), including future missions to Mars. Despite stringent water treatment and recycling efforts on the ISS, it is impossible to completely prevent microbial contamination of onboard water supplies. In this work, we used a spaceflight analogue culture system to better understand how the microgravity environment can influence the pathogenesis-related characteristics of Burkholderia cepacia complex (Bcc), an opportunistic pathogen previously recovered from the ISS water system. The results of the present study suggest that there may be important differences in how this pathogen can respond and adapt to spaceflight and other low fluid shear environments encountered during their natural life cycles. Future studies are aimed at understanding the underlying mechanisms responsible for these phenotypes.
ContributorsKang, Bianca Younseon (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, Mark (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
130320-Thumbnail Image.png
Description

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Scattering patterns resulting from single particles were selected and compiled into a dataset which can be valuable for algorithm developments in single particle scattering research.

ContributorsLi, Xuanxuan (Author) / Chiu, Chun-Ya (Author) / Wang, Hsiang-Ju (Author) / Kassemeyer, Stephan (Author) / Botha, Sabine (Author) / Shoeman, Robert L. (Author) / Lawrence, Robert (Author) / Kupitz, Christopher (Author) / Kirian, Richard (Author) / James, Daniel (Author) / Wang, Dingjie (Author) / Nelson, Garrett (Author) / Messerschmidt, Marc (Author) / Boutet, Sebastien (Author) / Williams, Garth J. (Author) / Hartman, Elisabeth (Author) / Jafarpour, Aliakbar (Author) / Foucar, Lutz M. (Author) / Barty, Anton (Author) / Chapman, Henry (Author) / Liang, Mengning (Author) / Menzel, Andreas (Author) / Wang, Fenglin (Author) / Basu, Shibom (Author) / Fromme, Raimund (Author) / Doak, R. Bruce (Author) / Fromme, Petra (Author) / Weierstall, Uwe (Author) / Huang, Michael H. (Author) / Spence, John (Author) / Schlichting, Ilme (Author) / Hogue, Brenda (Author) / Liu, Haiguang (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / School of Life Sciences (Contributor)
Created2017-04-11
130351-Thumbnail Image.png
Description

Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which

Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which the Vpu protein contributes to HIV-1 pathogenesis. Here we describe expression of Vpu in bacteria, its purification and characterization. We report the successful expression of PelB-Vpu in Escherichia coli using the leader peptide pectate lyase B (PelB) from Erwinia carotovora. The protein was detergent extractable and could be isolated in a very pure form. We demonstrate that the PelB signal peptide successfully targets Vpu to the cell membranes and inserts it as a type I membrane protein. PelB-Vpu was biophysically characterized by circular dichroism and dynamic light scattering experiments and was shown to be an excellent candidate for elucidating structural models.

ContributorsDeb, Arpan (Author) / Johnson, William (Author) / Kline, Alexander (Author) / Scott, Boston (Author) / Meador, Lydia (Author) / Srinivas, Dustin (Author) / Martin Garcia, Jose Manuel (Author) / Dorner, Katerina (Author) / Borges, Chad (Author) / Misra, Rajeev (Author) / Hogue, Brenda (Author) / Fromme, Petra (Author) / Mor, Tsafrir (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Biodesign Institute (Contributor) / School of Molecular Sciences (Contributor) / Applied Structural Discovery (Contributor) / Personalized Diagnostics (Contributor)
Created2017-02-22
131560-Thumbnail Image.png
Description
Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate

Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate that spaceflight negatively impacts aspects of the immune system. In order to ensure astronaut safety during long term missions, it is important to study the phenotypic effects of the microgravity environment on a range of medically important microbial pathogens that might be encountered by the crew. This ground-based study uses the NASA-engineered Rotating Wall Vessel (RWV) bioreactor as a spaceflight analogue culture system to grow bacteria under low fluid shear forces relative to those encountered in microgravity, and interestingly, in the intestinal tract during infection. The culture environment in the RWV is commonly referred to as low shear modeled microgravity (LSMMG). In this study, we characterized the stationary phase stress response of the enteric pathogen, Salmonella enterica serovar Enteritidis (S. Enteritidis), to LSMMG culture. We showed that LSMMG enhanced the resistance of stationary phase cultures of S. Enteritidis to acid and thermal stressors, which differed from the LSSMG stationary phase response of the closely related pathovar, S. Typhimurium. Interestingly, LSMMG increased the ability of both S. Enteritidis and S. Typhimurium to adhere to, invade into, and survive within an in vitro 3-D intestinal co-culture model containing immune cells. Our results indicate that LSMMG regulates pathogenesis-related characteristics of S. Enteritidis in ways that may present an increased health risk to astronauts during spaceflight missions.
ContributorsKoroli, Sara (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, C. Mark (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133138-Thumbnail Image.png
Description
The International Space Station (ISS) utilizes recycled water for consumption, cleaning and air humidity control. The Environmental Control and Life Support Systems (ECLSS) have been rigorously tested at the NASA Johnson Space Center. Despite the advanced engineering of the water recovery system, bacterial biofilms have been recovered from this potable

The International Space Station (ISS) utilizes recycled water for consumption, cleaning and air humidity control. The Environmental Control and Life Support Systems (ECLSS) have been rigorously tested at the NASA Johnson Space Center. Despite the advanced engineering of the water recovery system, bacterial biofilms have been recovered from this potable water source. Microbial contamination of potable water poses a potential threat to crew members onboard the ISS. Because astronauts have been found to have compromised immune systems, bacterial strains that would not typically be considered a danger must be carefully studied to better understand the mechanisms enabling their survival, including polymicrobial interactions. The need for a more thorough understanding of the effect of spaceflight environment on polymicrobial interactions and potential impact on crew health and vehicle integrity is heightened since 1) several potential pathogens have been isolated from the ISS potable water system, 2) spaceflight has been shown to induce unexpected alterations in microbial responses, and 3) emergent phenotypes are often observed when multiple bacterial species are co- cultured together, as compared to pure cultures of single species. In order to address these concerns, suitable growth media are required that will not only support the isolation of these microbes but also the ability to distinguish between them when grown as mixed cultures. In this study, selective and/or differential media were developed for bacterial isolates collected from the ISS potable water supply. In addition to facilitating discrimination between bacteria, the ideal media for each strain was intended to have a 100% recovery rate compared to traditional R2A media. Antibiotic and reagent susceptibility and resistance tests were conducted for the purpose of developing each individual medium. To study a wide range of targets, 12 antibiotics were selected from seven major classes, including penicillin, cephalosporins, fluoroquinolones, aminoglycosides, glycopeptides/lipoglycopeptides, macrolides/lincosamides/streptogramins, tetracyclines, in addition to seven unclassified antibiotics and three reagents. Once developed, medium efficacy was determined by means of growth curve experiments. The development of these media is a critical step for further research into the mechanisms utilized by these strains to survive the harsh conditions of the ISS water system. Furthermore, with an understanding of the complex nature of these polymicrobial communities, specific contamination targeting and control can be conducted to reduce the risk to crew members. Understanding these microbial species and their susceptibilities has potential application for future NASA human explorations, including those to Mars.
ContributorsKing, Olivia Grace (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, Mark (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
173947-Thumbnail Image.jpg
Created1935