Matching Items (127)
155499-Thumbnail Image.png
Description
The formation and stability of a slowly evolving zonal jet in 2-D flow with beta effect is analyzed using the model developed by Manfroi and Young in which the final governing equation was derived by means of a perturbation analysis of a barotropic vorticity equation with sinusoidal meridional mean flow.

The formation and stability of a slowly evolving zonal jet in 2-D flow with beta effect is analyzed using the model developed by Manfroi and Young in which the final governing equation was derived by means of a perturbation analysis of a barotropic vorticity equation with sinusoidal meridional mean flow. However in the original study the term β0, that represents the effect of large-scale Rossby waves, was dropped and was proceeded on a path of finding solutions for a simplified 1-D flow. The idea of this study is to understand the effects of the dropped term on the overall dynamics of the zonal jet evolution. For this purpose the system that is entirely deterministic with no additional forcing is solved by means of a standard finite difference scheme. The Numerical solutions are found for varying β0 and μ values where μ represents the bottom drag. In addition to this the criteria for the formation of zonal jets developed originally for the 1-D system is verified for the 2-D system as well. The study reveals the similarity in some of the results of the 1-D and the 2-D system like the merging of jets in the absence of bottom drag, formation of steady jets in presence of a non-zero bottom drag and the adherence to the boundary criteria for the formation of zonal jets. But when it comes to the formation of steady jets, a finite β0 value is required above which the solution is similar to the 1-D system. Also the jets formed under the presence of non-zero bottom drag seem wavy in nature which is different from the steady horizontal jets produced in the 1-D system.
ContributorsRaghunathan, Girish Nigamanth (Author) / Huang, Huei-Ping (Thesis advisor) / Herrmann, Marcus (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2017
128710-Thumbnail Image.png
Description

Deforestation in Myanmar has recently attracted much attention worldwide. This study examined spatio-temporal patterns of deforestation and forest carbon flux in Myanmar from 2001 to 2010 and environmental impacts at the regional scale using land products of the Moderate Resolution Imaging Spectroradiometer (MODIS). The results suggest that the total deforestation

Deforestation in Myanmar has recently attracted much attention worldwide. This study examined spatio-temporal patterns of deforestation and forest carbon flux in Myanmar from 2001 to 2010 and environmental impacts at the regional scale using land products of the Moderate Resolution Imaging Spectroradiometer (MODIS). The results suggest that the total deforestation area in Myanmar was 21,178.8 km2, with an annual deforestation rate of 0.81%, and that the total forest carbon release was 20.06 million tons, with an annual rate of 0.37%. Mangrove forests had the highest deforestation and carbon release rates, and deciduous forests had both the largest deforestation area and largest amount of carbon release. During the study period, the south and southwestern regions of Myanmar, especially Ayeyarwady and Rakhine, were deforestation hotspots (i.e., the highest deforestation and carbon release rates occurred in these regions). Deforestation caused significant carbon release, reduced evapotranspiration (ET), and increased land surface temperatures (LSTs) in deforested areas in Myanmar during the study period. Constructive policy recommendations are put forward based on these research results.

ContributorsWang, Chuyuan (Author) / Myint, Soe (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-09-02
128653-Thumbnail Image.png
Description

This paper reviews how remotely sensed data have been used to understand the impact of urbanization on global environmental change. We describe how these studies can support the policy and science communities’ increasing need for detailed and up-to-date information on the multiple dimensions of cities, including their social, biological, physical,

This paper reviews how remotely sensed data have been used to understand the impact of urbanization on global environmental change. We describe how these studies can support the policy and science communities’ increasing need for detailed and up-to-date information on the multiple dimensions of cities, including their social, biological, physical, and infrastructural characteristics. Because the interactions between urban and surrounding areas are complex, a synoptic and spatial view offered from remote sensing is integral to measuring, modeling, and understanding these relationships. Here we focus on three themes in urban remote sensing science: mapping, indices, and modeling. For mapping we describe the data sources, methods, and limitations of mapping urban boundaries, land use and land cover, population, temperature, and air quality. Second, we described how spectral information is manipulated to create comparative biophysical, social, and spatial indices of the urban environment. Finally, we focus how the mapped information and indices are used as inputs or parameters in models that measure changes in climate, hydrology, land use, and economics.

ContributorsWentz, Elizabeth (Author) / Anderson, Sharolyn (Author) / Fragkias, Michail (Author) / Netzband, Maik (Author) / Mesev, Victor (Author) / Myint, Soe (Author) / Quattrochi, Dale (Author) / Rahman, Atiqur (Author) / Seto, Karen C. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-04-30
128657-Thumbnail Image.png
Description

This study examines the spatial and temporal patterns of the surface urban heat island (SUHI) intensity in the Phoenix metropolitan area and the relationship with land use land cover (LULC) change between 2000 and 2014. The objective is to identify specific regions in Phoenix that have been increasingly heated and

This study examines the spatial and temporal patterns of the surface urban heat island (SUHI) intensity in the Phoenix metropolitan area and the relationship with land use land cover (LULC) change between 2000 and 2014. The objective is to identify specific regions in Phoenix that have been increasingly heated and cooled to further understand how LULC change influences the SUHI intensity. The data employed include MODerate-resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) 8-day composite June imagery, and classified LULC maps generated using 2000 and 2014 Landsat imagery. Results show that the regions that experienced the most significant LST changes during the study period are primarily on the outskirts of the Phoenix metropolitan area for both daytime and nighttime. The conversion to urban, residential, and impervious surfaces from all other LULC types has been identified as the primary cause of the UHI effect in Phoenix. Vegetation cover has been shown to significantly lower LST for both daytime and nighttime due to its strong cooling effect by producing more latent heat flux and less sensible heat flux. We suggest that urban planners, decision-makers, and city managers formulate new policies and regulations that encourage residential, commercial, and industrial developers to include more vegetation when planning new construction.

ContributorsWang, Chuyuan (Author) / Myint, Soe (Author) / Wang, Zhi-Hua (Author) / Song, Jiyun (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-26
128663-Thumbnail Image.png
Description

The urban heat island (UHI) phenomenon is a significant worldwide problem caused by rapid population growth and associated urbanization. The UHI effect exacerbates heat waves during the summer, increases energy and water consumption, and causes the high risk of heat-related morbidity and mortality. UHI mitigation efforts have increasingly relied on

The urban heat island (UHI) phenomenon is a significant worldwide problem caused by rapid population growth and associated urbanization. The UHI effect exacerbates heat waves during the summer, increases energy and water consumption, and causes the high risk of heat-related morbidity and mortality. UHI mitigation efforts have increasingly relied on wisely designing the urban residential environment such as using high albedo rooftops, green rooftops, and planting trees and shrubs to provide canopy coverage and shading. Thus, strategically designed residential rooftops and their surrounding landscaping have the potential to translate into significant energy, long-term cost savings, and health benefits. Rooftop albedo, material, color, area, slope, height, aspect and nearby landscaping are factors that potentially contribute. To extract, derive, and analyze these rooftop parameters and outdoor landscaping information, high resolution optical satellite imagery, LIDAR (light detection and ranging) point clouds and thermal imagery are necessary. Using data from the City of Tempe AZ (a 2010 population of 160,000 people), we extracted residential rooftop footprints and rooftop configuration parameters from airborne LIDAR point clouds and QuickBird satellite imagery (2.4 m spatial resolution imagery). Those parameters were analyzed against surface temperature data from the MODIS/ASTER airborne simulator (MASTER). MASTER images provided fine resolution (7 m) surface temperature data for residential areas during daytime and night time. Utilizing these data, ordinary least squares (OLS) regression was used to evaluate the relationships between residential building rooftops and their surface temperature in urban environment. The results showed that daytime rooftop temperature was closely related to rooftop spectral attributes, aspect, slope, and surrounding trees. Night time temperature was only influenced by rooftop spectral attributes and slope.

ContributorsZhao, Qunshan (Author) / Myint, Soe (Author) / Wentz, Elizabeth (Author) / Fan, Chao (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-09-18
135503-Thumbnail Image.png
Description
Formula SAE is a student design competition where students design and fabricate a formula-style racecar to race in a series of events against schools from around the world. It gives students of all majors the ability to use classroom theory and knowledge in a real world application. The general guidelines

Formula SAE is a student design competition where students design and fabricate a formula-style racecar to race in a series of events against schools from around the world. It gives students of all majors the ability to use classroom theory and knowledge in a real world application. The general guidelines for the prototype racecars is for the students to use four-stroke, Otto cycle piston engines with a displacement of no greater than 610cc. A 20mm air restrictor downstream the throttle limits the power of the engines to under 100 horsepower. A 178-page rulebook outlines the remaining restrictions as they apply to the various vehicle systems: vehicle dynamics, driver interface, aerodynamics, and engine. Vehicle dynamics is simply the study of the forces which affect wheeled vehicles in motion. Its primary components are the chassis and suspension system. Driver interface controls everything that the driver interacts with including steering wheel, seat, pedals, and shifter. Aerodynamics refers to the outside skin of the vehicle which controls the amount of drag and downforce on the vehicle. Finally, the engine consists of the air intake, engine block, cooling system, and the exhaust. The exhaust is one of the most important pieces of an engine that is often overlooked in racecar design. The purpose of the exhaust is to control the removal of the combusted air-fuel mixture from the engine cylinders. The exhaust as well as the intake is important because they govern the flow into and out of the engine's cylinders (Heywood 231). They are especially important in racecar design because they have a great impact on the power produced by an engine. The higher the airflow through the cylinders, the larger amount of fuel that can be burned and consequently, the greater amount of power the engine can produce. In the exhaust system, higher airflow is governed by several factors. A good exhaust design gives and engine a higher volumetric efficiency through the exhaust scavenging effect. Volumetric efficiency is also affected by frictional losses. In addition, the system should ideally be lightweight, and easily manufacturable. Arizona State University's Formula SAE racecar uses a Honda F4i Engine from a CBR 600 motorcycle. It is a four cylinder Otto cycle engine with a 600cc displacement. An ideal or tuned exhaust system for this car would maximize the negative gauge pressure during valve overlap at the ideal operating rpm. Based on the typical track layout for the Formula SAE design series, an ideal exhaust system would be optimized for 7500 rpm and work well in the range
ContributorsButterfield, Brandon Michael (Author) / Huang, Huei-Ping (Thesis director) / Trimble, Steven (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
190810-Thumbnail Image.png
Description
Failures in the cold chain, the system of refrigerated storage and transport that provides fresh produce or other essentials to be maintained at desired temperatures and environmental conditions, lead to food and energy waste. The mini container (MC) concept is introduced as an alternative to conventional refrigerated trucks (“reefers”), particularly

Failures in the cold chain, the system of refrigerated storage and transport that provides fresh produce or other essentials to be maintained at desired temperatures and environmental conditions, lead to food and energy waste. The mini container (MC) concept is introduced as an alternative to conventional refrigerated trucks (“reefers”), particularly for small growers. The energy consumption and corresponding GHG emissions for transporting tomatoes in two cities representing contrasting climates is analyzed for conventional reefers and the proposed mini containers. The results show that, for partial reefer loads, using the MCs reduces energy consumption and GHG emissions. The transient behavior of the vapor compression refrigeration cycle is analyzed by considering each component as a “lumped” system, and the resulting sub-models are solved using the Runge Kutta 4th-order method in a MATLAB code at hot and cold ambient temperatures. The time needed to reach steady state temperatures and the temperature values are determined. The maximum required compressor work in the transient phase and at steady state are computed, and as expected, as the ambient temperature increases, both values increase. Finally, the average coefficient of performance (COP) is determined for varying heat transfer coefficient values for the condenser and for the evaporator. The results show that the average COP increases as heat transfer coefficient values for the condenser and the evaporator increase. Starting the system from rest has an adverse effect on the COP due to the higher compressor load needed to change the temperature of the condenser and the evaporator. Finally, the impact on COP is analyzed by redirecting a fraction of the cold exhaust air to provide supplemental cooling of the condenser. It is noted that cooling the condenser improves the system's performance better than cooling the fresh air at 0% of returned air to the system.To sum up, the dissertation shows that the comparison between the conventional reefer and the MC illustrates the promising advantages of the MC, then a transient analysis is developed for deeply understanding the behaviors of the system component parameters, which leads finally to improvements in the system to enhance its performance.
ContributorsSyam, Mahmmoud Muhammed (Author) / Phelan, Patrick (Thesis advisor) / Villalobos, Rene (Thesis advisor) / Huang, Huei-Ping (Committee member) / Bocanegra, Luis (Committee member) / Al Omari, Salah (Committee member) / Arizona State University (Publisher)
Created2023