Matching Items (38)
162992-Thumbnail Image.png
Description

According to the Centers for Disease Control and Prevention (CDC), more people die in the U.S. from heat than from all other natural disasters combined. According to the Environmental Protection Agency (EPA), more than 1,300 deaths per year in the United States are due to extreme heat. Arizona, California and

According to the Centers for Disease Control and Prevention (CDC), more people die in the U.S. from heat than from all other natural disasters combined. According to the Environmental Protection Agency (EPA), more than 1,300 deaths per year in the United States are due to extreme heat. Arizona, California and Texas are the three states with the highest burden, accounting for 43% of all heat-related deaths according to the CDC.

Although only 5% of housing in Maricopa County, Arizona, is mobile homes, approximately 30% of indoor heat-related deaths occur in these homes. Thus, the residents of mobile homes in Maricopa County are disproportionately affected by heat. Mobile home residents are extremely exposed to heat due to the high density of mobile home parks, poor construction of dwellings, lack of vegetation, socio-demographic features and not being eligible to get utility and financial assistance.

We researched numerous solutions across different domains that could help build the heat resilience of mobile home residents. As a result we found 50 different solutions for diverse stakeholders, budgets and available resources. The goal of this toolbox is to present these solutions and to explain how to apply them in order to get the most optimal result and build About this Solutions Guide People who live in mobile homes are 6 to 8 times more likely to die of heat-associated deaths. heat resilience for mobile home residents. These solutions were designed as a coordinated set of actions for everyone — individual households, mobile home residents, mobile home park owners, cities and counties, private businesses and nonprofits serving mobile home parks, and other stakeholders — to be able to contribute to heat mitigation for mobile home residents.

When we invest in a collective, coordinated suite of solutions that are designed specifically to address the heat vulnerability of mobile homes residents, we can realize a resilience dividend in maintaining affordable, feasible, liveable housing for the 20 million Americans who choose mobile homes and manufactured housing as their place to live and thrive.

ContributorsVarfalameyeva, Katsiaryna (Author) / Solís, Patricia (Author) / Phillips, Lora A. (Author) / Charley, Elisha (Author) / Hondula, David M. (Author) / Kear, Mark (Author)
Created2021
167589-Thumbnail Image.png
Description

BACKGROUND: The City of Phoenix initiated the HeatReady program in 2018 to prepare for extreme heat, as there was no official tool, framework, or mechanism at the city level to manage extreme heat. The current landscape of heat safety culture in schools, which are critical community hubs, has received less

BACKGROUND: The City of Phoenix initiated the HeatReady program in 2018 to prepare for extreme heat, as there was no official tool, framework, or mechanism at the city level to manage extreme heat. The current landscape of heat safety culture in schools, which are critical community hubs, has received less illumination. HeatReady Schools—a critical component of a HeatReady City—are those that are increasingly able to identify, prepare for, mitigate, track, and respond to the negative impacts of schoolgrounds heat. However, minimal attention has been given to formalize heat preparedness in schools to mitigate high temperatures and health concerns in schoolchildren, a heat-vulnerable population. This study set out to understand heat perceptions, (re)actions, and recommendations of key stakeholders and to identify critical themes around heat readiness. METHODS: An exploratory sequential mixed-methods case study approach was used. These methods focused on acquiring new insight on heat perceptions at elementary schools through semi-structured interviews using thematic analysis and the Delphi panel. Participants included public health professionals and school community members at two elementary schools—one public charter, one public—in South Phoenix, Arizona, a region that has been burdened historically with inequitable distribution of heat resources due to environmental racism and injustices. RESULTS: Findings demonstrated that 1) current heat safety resources are available but not fully utilized within the school sites, 2) expert opinions support that extreme heat readiness plans must account for site-specific needs, particularly education as a first step, and 3) students are negatively impacted by the effects of extreme heat, whether direct or indirect, both inside and outside the classroom. CONCLUSIONS: From key informant interviews and a Delphi panel, a list of 30 final recommendations were developed as important actions to be taken to become “HeatReady.” Future work will apply these recommendations in a HeatReady School Growth Tool that schools can tailor be to their individual needs to improve heat safety and protection measures at schools.

ContributorsShortridge, Adora (Author) / Walker, William VI (Author) / White, Dave (Committee member) / Guardaro, Melissa (Committee member) / Hondula, David M. (Committee member) / Vanos, Jennifer (Committee member) / School of Sustainability (Contributor)
Created2022-04-18
156665-Thumbnail Image.png
Description
This dissertation research studies long-term spatio-temporal patterns of surface urban heat island (SUHI) intensity, urban evapotranspiration (ET), and urban outdoor water use (OWU) using Phoenix metropolitan area (PMA), Arizona as the case study. This dissertation is composed of three chapters. The first chapter evaluates the SUHI intensity for PMA using

This dissertation research studies long-term spatio-temporal patterns of surface urban heat island (SUHI) intensity, urban evapotranspiration (ET), and urban outdoor water use (OWU) using Phoenix metropolitan area (PMA), Arizona as the case study. This dissertation is composed of three chapters. The first chapter evaluates the SUHI intensity for PMA using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) product and a time-series trend analysis to discover areas that experienced significant changes of SUHI intensity between 2000 and 2017. The heating and cooling effects of different urban land use land cover (LULC) types was also examined using classified Landsat satellite images. The second chapter is focused on urban ET and the impacts of urban LULC change on ET. An empirical model of urban ET for PMA was built using flux tower data and MODIS land products using multivariate regression analysis. A time-series trend analysis was then performed to discover areas in PMA that experienced significant changes of ET between 2001 and 2015. The impact of urban LULC change on ET was examined using classified LULC maps. The third chapter models urban OWU in PMA using a surface energy balance model named METRIC (Mapping Evapotranspiration at high spatial Resolution with Internalized Calibration) and time-series Landsat Thematic Mapper 5 imagery for 2010. The relationship between urban LULC types and OWU was examined with the use of very high-resolution land cover classification data generated from the National Agriculture Imagery Program (NAIP) imagery and regression analysis. Socio-demographic variables were selected from census data at the census track level and analyzed against OWU to study their relationship using correlation analysis. This dissertation makes significant contributions and expands the knowledge of long-term urban climate dynamics for PMA and the influence of urban expansion and LULC change on regional climate. Research findings and results can be used to provide constructive suggestions to urban planners, decision-makers, and city managers to formulate new policies and regulations when planning new constructions for the purpose of sustainable development for a desert city.
ContributorsWang, Chuyuan (Author) / Myint, Soe W. (Thesis advisor) / Brazel, Anthony J. (Committee member) / Wang, Zhihua (Committee member) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2018
157538-Thumbnail Image.png
Description

Many coastal cities around the world are becoming increasingly vulnerable to natural disasters, particularly flooding driven by tropical storm and hurricane storm surge – typically the most destructive feature of these storms, generating significant economic damage and loss of life. This increase in vulnerability is driven by the interactions between

Many coastal cities around the world are becoming increasingly vulnerable to natural disasters, particularly flooding driven by tropical storm and hurricane storm surge – typically the most destructive feature of these storms, generating significant economic damage and loss of life. This increase in vulnerability is driven by the interactions between a wide number of complex social and climatic factors, including population growth, irresponsible urban development, a decrease in essential service provision, sea level rise, and changing storm regimes. These issues are exacerbated by the short-term strategic planning that dominates political action and economic decision-making, resulting in many vulnerable coastal communities being particularly unprepared for large, infrequent storm surge events. This lack of preparedness manifests in several ways, but one of the most visible is the lack of comprehensive evacuation and rescue operation plans for use after major storm surge flooding occurs. Typical evacuation or rescue plans are built using a model of a region’s intact road network. While useful for pre-disaster purposes, the immediate aftermath of large floods sees enormous swaths of a given region’s road system flooded, rendering most of these plans largely useless. Post-storm evacuation and rescue requires large amounts of atypical travel through a region (i.e., across non-road surfaces). Traditional road network models (such as those that are used to generate evacuation routes) are unable to conceptualize this type of transportation, and so are of limited utility during post-disaster scenarios. To solve these problems, this dissertation introduces an alternative network conceptualization that preserves important on-network information but also accounts for the possibility of off-network travel during a disaster. Providing this in situ context is necessary to adequately model transportation through a post-storm landscape, one in which evacuees and rescuers are regularly departing from roads and one in which many roads are completely interdicted by flooding. This modeling approach is used to automatically generate routes through a flooded coastal urban area, as well as to identify potentially critical road segments in advance of an actual storm. These tools may help both emergency managers better prepare for large storms, and urban planners in their efforts to mitigate flood damage.

ContributorsHelderop, Edward (Author) / Grubesic, Tony H. (Thesis advisor) / Kuby, Mike (Committee member) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2019
157609-Thumbnail Image.png
Description

Environmental heat is a growing concern in cities as a consequence of rapid urbanization and climate change, threatening human health and urban vitality. The transportation system is naturally embedded in the issue of urban heat and human heat exposure. Research has established how heat poses a threat to urban inhabitants

Environmental heat is a growing concern in cities as a consequence of rapid urbanization and climate change, threatening human health and urban vitality. The transportation system is naturally embedded in the issue of urban heat and human heat exposure. Research has established how heat poses a threat to urban inhabitants and how urban infrastructure design can lead to increased urban heat. Yet there are gaps in understanding how urban communities accumulate heat exposure, and how significantly the urban transportation system influences or exacerbates the many issues of urban heat. This dissertation focuses on advancing the understanding of how modern urban transportation influences urban heat and human heat exposure through three research objectives: 1) Investigate how human activity results in different outdoor heat exposure; 2) Quantify the growth and extent of urban parking infrastructure; and 3) Model and analyze how pavements and vehicles contribute to urban heat.

In the urban US, traveling outdoors (e.g. biking or walking) is the most frequent activity to cause heat exposure during hot periods. However, outdoor travel durations are often very short, and other longer activities such as outdoor housework and recreation contribute more to cumulative urban heat exposure. In Phoenix, parking and roadway pavement infrastructure contributes significantly to the urban heat balance, especially during summer afternoons, and vehicles only contribute significantly in local areas with high density rush hour vehicle travel. Future development of urban areas (especially those with concerns of extreme heat) should focus on ensuring access and mobility for its inhabitants without sacrificing thermal comfort. This may require urban redesign of transportation systems to be less auto-centric, but without clear pathways to mitigating impacts of urban heat, it may be difficult to promote transitions to travel modes that inherently necessitate heat exposure. Transportation planners and engineers need to be cognizant of the pathways to increased urban heat and human heat exposure when planning and designing urban transportation systems.

ContributorsHoehne, Christopher Glenn (Author) / Chester, Mikhail V (Thesis advisor) / Hondula, David M. (Committee member) / Sailor, David (Committee member) / Pendyala, Ram M. (Committee member) / Arizona State University (Publisher)
Created2019
157051-Thumbnail Image.png
Description

This study investigated the effect of environmental heat stress on physiological and performance measures during a ~4 mi time trial (TT) mountain hike in the Phoenix metropolitan area. Participants (n = 12; 7M/5F; age 21.6 ± 2.47 [SD]) climbed ‘A’ mountain (~1 mi) four times on a hot day (HOT;

This study investigated the effect of environmental heat stress on physiological and performance measures during a ~4 mi time trial (TT) mountain hike in the Phoenix metropolitan area. Participants (n = 12; 7M/5F; age 21.6 ± 2.47 [SD]) climbed ‘A’ mountain (~1 mi) four times on a hot day (HOT; wet bulb globe temperature [WBGT] = 31.6°C) and again on a moderate day (MOD; WBGT = 19.0°C). Physiological and performance measures were made before and throughout the course of each hike. Mean pre-hike hydration status (urine specific gravity [USG]) indicated that participants began both HOT and MOD trials in a euhydrated state (1.016 ± 0.010 and 1.010 ± 0.008, respectively) and means did not differ significantly between trials (p = .085). Time trial performance was impaired by -11% (11.1 minutes) in the HOT trial (105 ± 21.7 min), compared to MOD (93.9 ± 13.1 min) (p = .013). Peak core temperatures were significantly higher in HOT (38.5 ± 0.36°C) versus MOD (38.0 ± 0.30°C) with progressively increasing differences between trials over time (p < .001). Peak ratings of perceived exertion were significantly higher in HOT (14.2 ± 2.38) compared to MOD (11.9 ± 2.02) (p = .007). Relative intensity (percent of age-predicted maximal heart rate [HR]), estimated absolute intensity (metabolic equivalents [METs]), and estimated energy expenditure (MET-h) were all increased in HOT, but not significantly so. The HOT condition reduced predicted maximal aerobic capacity (CRFp) by 6% (p = .026). Sweat rates differed significantly between HOT (1.38 ± 0.53 L/h) and MOD (0.84 ± 0.27 L/h) (p = .01). Percent body mass loss (PBML) did not differ significantly between HOT (1.06 ± 0.95%) and MOD (0.98 ± 0.84%) (p = .869). All repeated measures variables showed significant between-subjects effects (p < .05), indicating individual differences in response to test conditions. Heat stress was shown to negatively affect physiological and performance measures in recreational mountain hikers. However, considerable variation exists between individuals, and the degree of physiological and performance impairment is probably due, in part, to differences in aerobic fitness and acclimatization status rather than pre- or during-performance hydration status.

ContributorsLinsell, Joshua (Author) / Wardenaar, Floris (Thesis advisor) / Berger, Christopher (Committee member) / Forzani, Erica (Committee member) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2019
155695-Thumbnail Image.png
Description

The Maricopa County Heat Relief Network (HRN) is an ad-hoc partially self-organized network with some attributes of hierarchical coordination that forms each year to provide heat relief and hydration to residents in need by operating as cooling centers. These HRN organizations are a collection of non-profit, governmental and religious organizations.

The Maricopa County Heat Relief Network (HRN) is an ad-hoc partially self-organized network with some attributes of hierarchical coordination that forms each year to provide heat relief and hydration to residents in need by operating as cooling centers. These HRN organizations are a collection of non-profit, governmental and religious organizations. This dissertation looks at the HRN from a complexity governance perspective and engaged different parts of the network in interviews to learn more about their perspective in delivering heat relief. Further, participatory modeling with a prototype agent based model was done with the HRN coordinating agencies to look for emergent outcomes in the HRN system and learn from their perspective. Chapter one evaluates organizational theory and complexity with climate adaptation, hazard preparedness and resilience in the HRN. Chapter two presents results from interviews with HRN facility managers and evaluates their perspective on how they function to offer heat relief. Chapter three finds that the HRN is a good example of complexity governance when engaged through a participatory agent based modeling approach. Chapter four engages the HRN coordinators in participatory agent based modeling interviews to increase their systems level awareness, learn about their perspective on heat relief delivery, and how the system can be improved. Chapter five looks across the different levels of the HRN investigated, the facility managers and coordinators, for differences and similarities in perspectives. The research conducted in this dissertation shows different levels of systems awareness of the different parts of the HRN and how participatory modeling can be used to increase systems awareness. Results indicate that there was very little horizontal network connection between HRN facility managers and most of the interaction was vertically coordinated indicating opportunities for increased network communication in the future both horizontally and vertically if communication interventions were put in place.

ContributorsUebelherr, Joshua (Author) / Johnston, Erik W., 1977- (Thesis advisor) / Hondula, David M. (Committee member) / Mossberger, Karen (Committee member) / Gerber, Brian (Committee member) / Arizona State University (Publisher)
Created2017
158355-Thumbnail Image.png
Description

Exertional heat stroke continues to be one of the leading causes of illness and death in sport in the United States, with an athlete’s experienced microclimate varying by venue design and location. A limited number of studies have attempted to determine the relationship between observed wet bulb globe temperature (WBGT)

Exertional heat stroke continues to be one of the leading causes of illness and death in sport in the United States, with an athlete’s experienced microclimate varying by venue design and location. A limited number of studies have attempted to determine the relationship between observed wet bulb globe temperature (WBGT) and WBGT derived from regional weather station data. Moreover, only one study has quantified the relationship between regionally modeled and on-site measured WBGT over different athletic surfaces (natural grass, rubber track, and concrete tennis court). The current research expands on previous studies to examine how different athletic surfaces influence the thermal environment in the Phoenix Metropolitan Area using a combination of fieldwork, modeling, and statistical analysis. Meteorological data were collected from 0700–1900hr across 6 days in June and 5 days in August 2019 in Tempe, Arizona at various Sun Devil Athletics facilities. This research also explored the influence of surface temperatures on WBGT and the changes projected under a future warmer climate. Results indicate that based on American College of Sports Medicine guidelines practice would not be cancelled in June (WBGT≥32.3°C); however, in August, ~33% of practice time was lost across multiple surfaces. The second-tier recommendations (WBGT≥30.1°C) to limit intense exercise were reached an average of 7 hours each day for all surfaces in August. Further, WBGT was calculated using data from four Arizona Meteorological Network (AZMET) weather stations to provide regional WBGT values for comparison. The on-site (field/court) WBGT values were consistently higher than regional values and significantly different (p<0.05). Thus, using regionally-modeled WBGT data to guide activity or clothing modification for heat safety may lead to misclassification and unsafe conditions. Surface temperature measurements indicate a maximum temperature (170°F) occurring around solar noon, yet WBGT reached its highest level mid-afternoon and on the artificial turf surface (2–5PM). Climate projections show that WBGT values are expected to rise, further restricting the amount of practice and games than can take place outdoors during the afternoon. The findings from this study can be used to inform athletic trainers and coaches about the thermal environment through WBGT values on-field.

ContributorsGuyer, Haven Elizabeth (Author) / Vanos, Jennifer K. (Thesis advisor) / Georgescu, Matei (Thesis advisor) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2020
158407-Thumbnail Image.png
Description

Interdisciplinary research has highlighted how social-ecological dynamics drive the structure and function of the urban landscape across multiple scales. Land management decisions operate across various levels, from individuals in their backyard to local municipalities and broader political-economic forces. These decisions then scale up and down across the landscape to influence

Interdisciplinary research has highlighted how social-ecological dynamics drive the structure and function of the urban landscape across multiple scales. Land management decisions operate across various levels, from individuals in their backyard to local municipalities and broader political-economic forces. These decisions then scale up and down across the landscape to influence ecological functioning, such as the provisioning of biodiversity. Likewise, people are influenced by, and respond to, their environment. However, there is a lack of integrated research, especially research that considers the spatial and temporal complexities of social-ecological dynamics, to fully understand how people influence ecosystems or how the resulting landscape in turn influences human decision making, attitudes, and well-being.

My dissertation connects these interdisciplinary themes to examine three questions linked by their investigation of the interactions between people and biodiversity: (1) How do the social and spatial patterns within an arid city affect people’s attitudes about their regional desert environment? (2) How are novel communities in cities assembled given the social-ecological dynamics that influence the processes that structure ecological communities? (3) How can we reposition bird species traits into a conservation framework that explains the complexity of the interactions between people and urban bird communities? I found that social-ecological dynamics between people, the environment, and biodiversity are tightly interwoven in urban ecosystems. The regional desert environment shapes people’s attitudes along spatial and social configurations, which holds implications for yard management decisions. Multi-scalar management decisions then influence biodiversity throughout cities, which shifts public perceptions of urban nature. Overall, my research acts as a bridge between social and ecological sciences to theoretically and empirically integrate research focused on biodiversity conservation in complex, social-ecological systems. My goal as a scholar is to understand the balance between social and ecological implications of landscape change to support human well-being and promote biodiversity conservation.

ContributorsAndrade, Riley (Author) / Franklin, Janet (Thesis advisor) / Larson, Kelli L (Thesis advisor) / Hondula, David M. (Committee member) / Lerman, Susannah B (Committee member) / Arizona State University (Publisher)
Created2020
158219-Thumbnail Image.png
Description

This study aimed to investigate the effects of specific macronutrient feedings on competitive golf performance and perceived levels of fatigue and alertness. Participants played three, nine hole rounds of golf, consuming an isocaloric beverage as a control (CON), with the addition of carbohydrate (CHO), or combination of protein and carbohydrate

This study aimed to investigate the effects of specific macronutrient feedings on competitive golf performance and perceived levels of fatigue and alertness. Participants played three, nine hole rounds of golf, consuming an isocaloric beverage as a control (CON), with the addition of carbohydrate (CHO), or combination of protein and carbohydrate (COM). Physiological and performance measurements were taken before, during, and following each nine hole round. Performance measurements include driving accuracy (DA), driving distance (DD), iron accuracy (IA), chipping accuracy (CA), and putting accuracy (PA). Pre-golf hydration status (urine specific gravity [USG]) and Sweat Rate during golf performance showed no significant differences between trials. All nine hole rounds were performed in ~2 hours. Environmental conditions were similar for all three testing days (mean WBGT=10.946). No significant differences were seen in Driving Distance, Driving Accuracy, and Iron Accuracy for all nine holes between groups receiving different macronutrient feedings. Chipping Accuracy was significantly better in CON trial compared to CHO (p=0.004) and COM (p=0.019). No significant differences were seen in putting make percentages. COM trial significantly lowered Perceived Levels of Fatigue (p=0.019) compared to CON. The CHO trial showed significant improvements in DA compared to CON (13.7 vs. 44.1, p=0.012) and COM (13.7 vs. 33.6, p=0.004) in the first four holes. In the last five holes, the COM trial showed significant improvements in DA compared to CHO (17.5 vs. 29.7, p=0.007). Low Handicap golfers (3 +/- 3) performed significantly better than High Handicap golfers (14 +/- 3.6) in DD (265 vs. 241, p<0.001), DA (15.0 vs. 29.3, p=0.004), IA (15.2 vs. 25.2, p<0.001), CA (52.0 vs. 61.5, p=0.027), and PA 5ft (64% vs. 40%, p=0.003). High Handicap players showed no significant differences between the three trials for any golf performance measurements. Low Handicap players showed significant improvements in DA for COM trial compared to CON trial (13.6 vs. 27.6, p=0.003). The results suggest that carbohydrates at the start and a combination of carbohydrate and protein is beneficial at the second part of 9 holes to improve golf performance and maintain levels of fatigue, however, it needs to be investigated how this knowledge will relate to playing more holes.

ContributorsThompsett, Daniel James (Author) / Wardenaar, Floris (Thesis advisor) / Der Ananian, Cheryl (Committee member) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2020