Matching Items (27)
Description
Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use

Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use them for developing software for laboratory automation systems. This thesis proposes an architecture that is based on existing software architectural paradigms and is specifically tailored to developing software for a laboratory automation system. The architecture is based on fairly autonomous software components that can be distributed across multiple computers. The components in the architecture make use of asynchronous communication methodologies that are facilitated by passing messages between one another. The architecture can be used to develop software that is distributed, responsive and thread-safe. The thesis also proposes a framework that has been developed to implement the ideas proposed by the architecture. The framework is used to develop software that is scalable, distributed, responsive and thread-safe. The framework currently has components to control very commonly used laboratory automation devices such as mechanical stages, cameras, and also to do common laboratory automation functionalities such as imaging.
ContributorsKuppuswamy, Venkataramanan (Author) / Meldrum, Deirdre (Thesis advisor) / Collofello, James (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Johnson, Roger (Committee member) / Arizona State University (Publisher)
Created2012
Description
In the frenzy of next generation genetic sequencing and proteomics, single-cell level analysis has begun to find its place in the crux of personalized medicine and cancer research. Single live cell 3D imaging technology is one of the most useful ways of providing spatial and morphological details inside living single

In the frenzy of next generation genetic sequencing and proteomics, single-cell level analysis has begun to find its place in the crux of personalized medicine and cancer research. Single live cell 3D imaging technology is one of the most useful ways of providing spatial and morphological details inside living single cells. It provides a window to uncover the mysteries of protein structure and folding, as well as genetic expression over time, which will tremendously improve the state of the fields of biophysics and biomedical research. This thesis project specifically demonstrates a method for live single cell rotation required to image them in the single live cell CT imaging platform. The method of rotation proposed in this thesis uses dynamic optical traps generated by a phase-only spatial light modulator (SLM) to exert torque on a single mammalian cell. Laser patterns carrying the holographic information of the traps are delivered from the SLM through a transformation telescope into the objective lens and onto its focal plane to produce the desired optical trap "image". The phase information in the laser patterns being delivered are continuously altered by the SLM such that the structure of the wavefront produces two foci at opposite edges of the cell of interest that each moves along the circumference of the cell in opposite axial directions. Momentum generated by the motion of the foci exerts a torque on the cell, causing it to rotate. The viability of this method was demonstrated experimentally. Software was written using LabVIEW to control the display panel of the SLM.
ContributorsChan, Samantha W (Author) / Meldrum, Deridre R (Thesis advisor) / Kleim, Jeffrey A (Committee member) / Johnson, Roger H (Committee member) / Kelbauskas, Laimonas (Committee member) / Arizona State University (Publisher)
Created2013
151177-Thumbnail Image.png
Description
Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of

Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of single cells. Yet to date, no live-cell compatible version of the technology exists. In this thesis, a microfluidic chip with the ability to rotate live single cells in hydrodynamic microvortices about an axis parallel to the optical focal plane has been demonstrated. The chip utilizes a novel 3D microchamber design arranged beneath a main channel creating flow detachment into the chamber, producing recirculating flow conditions. Single cells are flowed through the main channel, held in the center of the microvortex by an optical trap, and rotated by the forces induced by the recirculating fluid flow. Computational fluid dynamics (CFD) was employed to optimize the geometry of the microchamber. Two methods for the fabrication of the 3D microchamber were devised: anisotropic etching of silicon and backside diffuser photolithography (BDPL). First, the optimization of the silicon etching conditions was demonstrated through design of experiment (DOE). In addition, a non-conventional method of soft-lithography was demonstrated which incorporates the use of two positive molds, one of the main channel and the other of the microchambers, compressed together during replication to produce a single ultra-thin (<200 µm) negative used for device assembly. Second, methods for using thick negative photoresists such as SU-8 with BDPL have been developed which include a new simple and effective method for promoting the adhesion of SU-8 to glass. An assembly method that bonds two individual ultra-thin (<100 µm) replications of the channel and the microfeatures has also been demonstrated. Finally, a pressure driven pumping system with nanoliter per minute flow rate regulation, sub-second response times, and < 3% flow variability has been designed and characterized. The fabrication and assembly of this device is inexpensive and utilizes simple variants of conventional microfluidic fabrication techniques, making it easily accessible to the single cell analysis community.
ContributorsMyers, Jakrey R (Author) / Meldrum, Deirdre (Thesis advisor) / Johnson, Roger (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2012
137546-Thumbnail Image.png
Description
In vitro measurements of cellular respiration have proven to be key biomarkers for the early onset of tumor formation in certain pathological mechanisms.1 The examination of isolated single cells has shown promise in predicting the onset of cancerous growth much earlier than current methods allow.2 Specifically, measurements of the oxygen

In vitro measurements of cellular respiration have proven to be key biomarkers for the early onset of tumor formation in certain pathological mechanisms.1 The examination of isolated single cells has shown promise in predicting the onset of cancerous growth much earlier than current methods allow.2 Specifically, measurements of the oxygen consumption rates of precancerous cells have elucidated outliers which predict the early onset of esophageal cancer.2 Single cell profiling can fit in to current pathology studies and can serve as a step along the way, much like PCR or gel assays, in detecting biomarkers earlier than current clinical methods.3 Measurement of these single cell metabolic rates is currently limited to 25 cells per experiment. It is the aim of this project to increase throughput from 25 cells to 225 cells per experiment via the implementation of new hardware and software which fit with current methods to allow the same experimental structure. Successful implementation of such methods will allow for more rapid and efficient data collection, facilitating quantitative results and nine times the yield from the same experimental manpower and funding. This document focuses on the implementation ultra high density (UHD) hardware consisting of a pneumatic molar design, angular adjustment features and a mechanical Z-stage. These components have produced the most encouraging results thus far and are the key changes in transitioning to higher throughput experiments.
ContributorsUeberroth, Benjamin Edward (Author) / Kelbauskas, Laimonas (Thesis director) / Ashili, Shashanka (Committee member) / Myers, Jakrey (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137396-Thumbnail Image.png
Description
Esophageal adenocarcinoma (EAC) is one of the most lethal and fastest growing cancers in the United States. Its onset is commonly triggered by metaplastic transformation of normal squamous esophageal epithelial cells to Barrett's esophagus (BE) cells in response to acid reflux. BE patients are believed to progress through non-dysplastic metaplasia

Esophageal adenocarcinoma (EAC) is one of the most lethal and fastest growing cancers in the United States. Its onset is commonly triggered by metaplastic transformation of normal squamous esophageal epithelial cells to Barrett's esophagus (BE) cells in response to acid reflux. BE patients are believed to progress through non-dysplastic metaplasia and increasing grades of dysplasia prior to EAC. Conventional cancer diagnostic tools rely on bulk-cell analyses that are incapable of identifying intratumoral heterogeneity or rare driver cells that play important roles in cancer progression. An improved single-cell method of cancer diagnosis would overcome this challenge by detecting cancer initiating cells before they progress into untreatable stages. In this study, using EAC as a model, we attempted to identify a more effective method of cancer diagnosis. We quantified the single- and bulk-cell mRNA expression of genes that have been proposed to be instrumental in the progression of EAC through BE. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) analysis was performed on human primary cells to measure the mRNA expression levels of BE- and EAC-associated genes. Our results showed high levels of heterogeneity of CDX2 and TFF3 at the single-cell resolution in human BE and EAC samples. Additionally, while expression of VEGF is generally low at the bulk-cell level, our results showed that a few, rare cells had significantly higher VEGF expression levels than the majority of cells in the EAC sample. In conclusion, we have affirmed that EAC cancer cells, as well as BE cells, show high levels of heterogeneity. Based on the VEGF gene expression pattern, single-cell analysis could potentially be more effective for identifying rare, but essential cells for cancer progression, which could then be targeted for treatment. Future studies will focus on analyzing human samples from thousands of normal and cancer subjects to validate the use of single-cell profiling in cancer.
ContributorsHaeuser, Kelsey Lynn (Author) / Tran, Thai (Thesis director) / Kelbauskas, Laimonas (Committee member) / Gao, Weimin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-12
130342-Thumbnail Image.png
Description
Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D,

Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria.
Methodology
We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure.
Principal Findings
We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations.
Conclusions
Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the value of automated quantitative 3D nuclear morphometry as an objective tool to enable development of sensitive and specific nuclear grade classification in breast cancer diagnosis.
Created2012-01-05
155541-Thumbnail Image.png
Description
In the past decades, single-cell metabolic analysis has been playing a key role in understanding cellular heterogeneity, disease initiation, progression, and drug resistance. Therefore, it is critical to develop technologies for individual cellular metabolic analysis using various configurations of microfluidic devices. Compared to bulk-cell analysis which is widely used by

In the past decades, single-cell metabolic analysis has been playing a key role in understanding cellular heterogeneity, disease initiation, progression, and drug resistance. Therefore, it is critical to develop technologies for individual cellular metabolic analysis using various configurations of microfluidic devices. Compared to bulk-cell analysis which is widely used by reporting an averaged measurement, single-cell analysis is able to present the individual cellular responses to the external stimuli. Particularly, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) are two key parameters to monitor heterogeneous metabolic profiles of cancer cells. To achieve multi-parameter metabolic measurements on single cells, several technical challenges need to be overcome: (1) low adhesion of soft materials micro-fabricated on glass surface for multiple-sensor deposition and single-cell immobilization, e.g. SU-8, KMPR, etc.; (2) high risk of using external mechanical forces to create hermetic seals between two rigid fused silica parts, even with compliance layers; (3) how to accomplish high-throughput for single-cell trapping, metabolic profiling and drug screening; (4) high process cost of micromachining on glass substrate and incapability of mass production.

In this dissertation, the development of microfabrication technologies is demonstrated to design reliable configurations for analyzing multiple metabolic parameters from single cells, including (1) improved KMPR/SU-8 microfabrication protocols for fabricating microwell arrays that can be integrated and sealed to 3 × 3 tri-color sensor arrays for OCR and ECAR measurements; (2) design and characterization of a microfluidic device enabling rapid single-cell trapping and hermetic sealing single cells and tri-color sensors within 10 × 10 hermetically sealed microchamber arrays; (3) exhibition of a low-cost microfluidic device based on plastics for single-cell metabolic multi-parameter profiling. Implementation of these improved microfabrication methods should address the aforementioned challenges and provide a high throughput and multi-parameter single cell metabolic analysis platform.
ContributorsSong, Ganquan (Author) / Meldrum, Deirdre R. (Thesis advisor) / Goryll, Michael (Committee member) / Kelbauskas, Laimonas (Committee member) / Wang, Hong (Committee member) / Arizona State University (Publisher)
Created2017
152809-Thumbnail Image.png
Description
Cell-cell interactions in a microenvironment under stress conditions play a critical role in pathogenesis and pre-malignant progression. Hypoxia is a central factor in carcinogenesis, which induces selective pressure in this process. Understanding the role of intercellular communications and cellular adaptation to hypoxia can help discover new cancer biosignatures and more

Cell-cell interactions in a microenvironment under stress conditions play a critical role in pathogenesis and pre-malignant progression. Hypoxia is a central factor in carcinogenesis, which induces selective pressure in this process. Understanding the role of intercellular communications and cellular adaptation to hypoxia can help discover new cancer biosignatures and more effective diagnostic and therapeutic strategies. This dissertation presents a study on transcriptomic and metabolic profiling of pre-malignant progression of Barrett's esophagus. It encompasses two methodology developments and experimental findings of two related studies. To integrate phenotype and genotype measurements, a minimally invasive method was developed for selectively retrieving single adherent cells from cell cultures. Selected single cells can be harvested by a combination of mechanical force and biochemical treatment after phenotype measurements and used for end-point assays. Furthermore, a method was developed for analyzing expression levels of ten genes in individual mammalian cells with high sensitivity and reproducibility without the need of pre-amplifying cDNA. It is inexpensive and compatible with most of commercially available RT-qPCR systems, which warrants a wide applicability of the method to gene expression analysis in single cells. In the first study, the effect of intercellular interactions was investigated between normal esophageal epithelial and dysplastic Barrett's esophagus cells on gene expression levels and cellular functions. As a result, gene expression levels in dysplastic cells were found to be affected to a significantly larger extent than in the normal esophageal epithelial cells. These differentially expressed genes are enriched in cellular movement, TGFβ and EGF signaling networks. Heterotypic interactions between normal and dysplastic cells can change cellular motility and inhibit proliferation in both normal and dysplastic cells. In the second study, alterations in gene transcription levels and metabolic phenotypes between hypoxia-adapted cells and age-matched normoxic controls representing four different stages of pre-malignant progression in Barrett's esophagus were investigated. Through differential gene expression analysis and mitochondrial membrane potential measurements, evidence of clonal evolution induced by hypoxia selection pressure in metaplastic and high-grade dysplastic cells was found. These discoveries on cell-cell interactions and hypoxia adaptations provide a deeper insight into the dynamic evolutionary process in pre-malignant progression of Barrett's esophagus.
ContributorsZeng, Jia (Author) / Meldrum, Deirdre R (Thesis advisor) / Kelbauskas, Laimonas (Committee member) / Barrett, Michael T (Committee member) / Bussey, Kimberly J (Committee member) / Zhang, Weiwen (Committee member) / Arizona State University (Publisher)
Created2014
129516-Thumbnail Image.png
Description

Deposits of dark material appear on Vesta’s surface as features of relatively low-albedo in the visible wavelength range of Dawn’s camera and spectrometer. Mixed with the regolith and partially excavated by younger impacts, the material is exposed as individual layered outcrops in crater walls or ejecta patches, having been uncovered

Deposits of dark material appear on Vesta’s surface as features of relatively low-albedo in the visible wavelength range of Dawn’s camera and spectrometer. Mixed with the regolith and partially excavated by younger impacts, the material is exposed as individual layered outcrops in crater walls or ejecta patches, having been uncovered and broken up by the impact. Dark fans on crater walls and dark deposits on crater floors are the result of gravity-driven mass wasting triggered by steep slopes and impact seismicity. The fact that dark material is mixed with impact ejecta indicates that it has been processed together with the ejected material. Some small craters display continuous dark ejecta similar to lunar dark-halo impact craters, indicating that the impact excavated the material from beneath a higher-albedo surface. The asymmetric distribution of dark material in impact craters and ejecta suggests non-continuous distribution in the local subsurface. Some positive-relief dark edifices appear to be impact-sculpted hills with dark material distributed over the hill slopes.

Dark features inside and outside of craters are in some places arranged as linear outcrops along scarps or as dark streaks perpendicular to the local topography. The spectral characteristics of the dark material resemble that of Vesta’s regolith. Dark material is distributed unevenly across Vesta’s surface with clusters of all types of dark material exposures. On a local scale, some craters expose or are associated with dark material, while others in the immediate vicinity do not show evidence for dark material. While the variety of surface exposures of dark material and their different geological correlations with surface features, as well as their uneven distribution, indicate a globally inhomogeneous distribution in the subsurface, the dark material seems to be correlated with the rim and ejecta of the older Veneneia south polar basin structure. The origin of the dark material is still being debated, however, the geological analysis suggests that it is exogenic, from carbon-rich low-velocity impactors, rather than endogenic, from freshly exposed mafic material or melt, exposed or created by impacts.

ContributorsJaumann, R. (Author) / Nass, A. (Author) / Otto, K. (Author) / Krohn, K. (Author) / Stephan, K. (Author) / McCord, T. B. (Author) / Williams, David (Author) / Raymond, C. A. (Author) / Blewett, D. T. (Author) / Hiesinger, H. (Author) / Yingst, R. A. (Author) / De Sanctis, M. C. (Author) / Palomba, E. (Author) / Roatsch, T. (Author) / Matz, K-D. (Author) / Preusker, F. (Author) / Scholten, F. (Author) / Russell, C. T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-15
129393-Thumbnail Image.png
Description

We produced a geologic map of the Av-9 Numisia quadrangle of asteroid Vesta using Dawn spacecraft data to serve as a tool to understand the geologic relations of surface features in this region. These features include the plateau Vestalia Terra, a hill named Brumalia Tholus, and an unusual “dark ribbon”

We produced a geologic map of the Av-9 Numisia quadrangle of asteroid Vesta using Dawn spacecraft data to serve as a tool to understand the geologic relations of surface features in this region. These features include the plateau Vestalia Terra, a hill named Brumalia Tholus, and an unusual “dark ribbon” material crossing the majority of the map area. Stratigraphic relations suggest that Vestalia Terra is one of the oldest features on Vesta, despite a model crater age date similar to that of much of the surface of the asteroid. Cornelia, Numisia and Drusilla craters reveal bright and dark material in their walls, and both Cornelia and Numisia have smooth and pitted terrains on their floors suggestive of the release of volatiles during or shortly after the impacts that formed these craters. Cornelia, Fabia and Teia craters have extensive bright ejecta lobes. While diogenitic material has been identified in association with the bright Teia and Fabia ejecta, hydroxyl has been detected in the dark material within Cornelia, Numisia and Drusilla. Three large pit crater chains appear in the map area, with an orientation similar to the equatorial troughs that cut the majority of Vesta. Analysis of these features has led to several interpretations of the geological history of the region. Vestalia Terra appears to be mechanically stronger than the rest of Vesta. Brumalia Tholus may be the surface representation of a dike-fed laccolith. The dark ribbon feature is proposed to represent a long-runout ejecta flow from Drusilla crater.

ContributorsBuczkowski, D. L. (Author) / Wyrick, D.Y. (Author) / Toplis, M. (Author) / Yingst, R. A. (Author) / Williams, David (Author) / Garry, W. B. (Author) / Mest, S. (Author) / Kneissl, T. (Author) / Scully, J. E. C. (Author) / Nathues, A. (Author) / De Sanctis, M. C. (Author) / Le Corre, L. (Author) / Reddy, V. (Author) / Hoffmann, M. (Author) / Ammannito, E. (Author) / Frigeri, A. (Author) / Tosi, F. (Author) / Preusker, F. (Author) / Roatsch, T. (Author) / Raymond, C. A. (Author) / Jaumann, R. (Author) / Pieters, C. M. (Author) / Russell, C. T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-03-14