Matching Items (62)
128299-Thumbnail Image.png
Description

Atmospheric radiocarbon (14C) represents an important observational constraint on emissions of fossil-fuel derived carbon into the atmosphere due to the absence of 14C in fossil fuel reservoirs. The high sensitivity and precision that accelerator mass spectrometry (AMS) affords in atmospheric 14C analysis has greatly increased the potential for using such

Atmospheric radiocarbon (14C) represents an important observational constraint on emissions of fossil-fuel derived carbon into the atmosphere due to the absence of 14C in fossil fuel reservoirs. The high sensitivity and precision that accelerator mass spectrometry (AMS) affords in atmospheric 14C analysis has greatly increased the potential for using such measurements to evaluate bottom-up emissions inventories of fossil fuel CO2(CO2ff), as well as those for other co-emitted species. Here we use observations of 14CO2 and a series of primary hydrocarbons and combustion tracers from discrete air samples collected between June 2009 and September 2010 at the National Oceanic and Atmospheric Administration Boulder Atmospheric Observatory (BAO; Lat: 40.050° N, Lon: 105.004° W) to derive emission ratios of each species with respect to CO2ff. The BAO tower is situated at the boundary of the Denver metropolitan area to the south and a large industrial and agricultural region to the north and east, making it an ideal location to study the contrasting mix of emissions from the activities in each region. The species considered in this analysis are carbon monoxide (CO), methane (CH4), acetylene (C2H2), benzene (C6H6), and C3–C5 alkanes. We estimate emissions for a subset of these species by using the Vulcan high resolution CO2ff emission data product as a reference. We find that CO is overestimated in the 2008 National Emissions Inventory (NEI08) by a factor of ~2. A close evaluation of the inventory suggests that the ratio of CO emitted per unit fuel burned from on-road gasoline vehicles is likely over-estimated by a factor of 2.5. Using a wind-directional analysis of the data, we find enhanced concentrations of CH4, relative to CO2ff, in air influenced by emissions to the north and east of the BAO tower when compared to air influenced by emissions in the Denver metro region to the south. Along with enhanced CH4, the strongest enhancements of the C3–C5 alkanes are also found in the north and east wind sector, suggesting that both the alkane and CH4 enhancements are sourced from oil and gas fields located to the northeast, though it was not possible to rule out the contribution of non oil and gas CH4 sources.

ContributorsLaFranchi, B. W. (Author) / Petron, G. (Author) / Miller, J. B. (Author) / Lehman, S. J. (Author) / Andrews, A. E. (Author) / Dlugokencky, E. J. (Author) / Hall, B. (Author) / Miller, B. R. (Author) / Montzka, S. A. (Author) / Neff, W. (Author) / Novelli, P. C. (Author) / Sweeney, C. (Author) / Turnbull, J. C. (Author) / Wolfe, D. E. (Author) / Tans, P. P. (Author) / Gurney, Kevin (Author) / Guilderson, T. P. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-15
128312-Thumbnail Image.png
Description

A significant challenge of our time is conserving biological diversity while maintaining economic development and cultural values. The United Nations Educational, Scientific and Cultural Organization has established biosphere reserves within its Man and the Biosphere program as a model means for accomplishing this very challenge. The East Carpathians Biosphere Reserve

A significant challenge of our time is conserving biological diversity while maintaining economic development and cultural values. The United Nations Educational, Scientific and Cultural Organization has established biosphere reserves within its Man and the Biosphere program as a model means for accomplishing this very challenge. The East Carpathians Biosphere Reserve (ECBR), spreading across Poland, Slovakia, and Ukraine, represents a large social-ecological system (SES) that has been protected under the biosphere reserve designation since 1998. We have explored its successes and failures in improving human livelihoods while safeguarding its ecosystems. The SES framework, which includes governance system, actors, resources, and external influences, was used as a frame of analysis. The outcomes of this protected area have been mixed; its creation led to national and international collaboration, yet some actor groups remain excluded. Implementation of protocols arising from the Carpathian Convention has been slow, while deforestation, hunting, erosion, temperature extremes, and changes in species behavior remain significant threats but have also been factors in ecological adaptation. The loss of cultural links and traditional knowledge has also been significant. Nevertheless, this remains a highly biodiverse area. Political barriers and institutional blockages will have to be removed to ensure this reserve fulfills its role as a model region for international collaboration and capacity building. These insights drawn from the ECBR demonstrate that biosphere reserves are indeed learning sites for sustainable development and that this case is exemplary in illustrating the challenges, but more importantly, the opportunities that arise when ensuring parallel care and respect for people and ecosystems through the model of transboundary protected areas around the world.

Created2016
128318-Thumbnail Image.png
Description

Urban environments are the primary contributors to global anthropogenic carbon emissions. Because much of the growth in CO2 emissions will originate from cities, there is a need to develop, assess, and improve measurement and modeling strategies for quantifying and monitoring greenhouse gas emissions from large urban centers. In this study

Urban environments are the primary contributors to global anthropogenic carbon emissions. Because much of the growth in CO2 emissions will originate from cities, there is a need to develop, assess, and improve measurement and modeling strategies for quantifying and monitoring greenhouse gas emissions from large urban centers. In this study the uncertainties in an aircraft-based mass balance approach for quantifying carbon dioxide and methane emissions from an urban environment, focusing on Indianapolis, IN, USA, are described. The relatively level terrain of Indianapolis facilitated the application of mean wind fields in the mass balance approach. We investigate the uncertainties in our aircraft-based mass balance approach by (1) assessing the sensitivity of the measured flux to important measurement and analysis parameters including wind speed, background CO2 and CH4, boundary layer depth, and interpolation technique, and (2) determining the flux at two or more downwind distances from a point or area source (with relatively large source strengths such as solid waste facilities and a power generating station) in rapid succession, assuming that the emission flux is constant. When we quantify the precision in the approach by comparing the estimated emissions derived from measurements at two or more downwind distances from an area or point source, we find that the minimum and maximum repeatability were 12 and 52%, with an average of 31%. We suggest that improvements in the experimental design can be achieved by careful determination of the background concentration, monitoring the evolution of the boundary layer through the measurement period, and increasing the number of downwind horizontal transect measurements at multiple altitudes within the boundary layer.

ContributorsCambaliza, M. O. L. (Author) / Shepson, P. B. (Author) / Caulton, D. R. (Author) / Stirm, B. (Author) / Samarov, D. (Author) / Gurney, Kevin (Author) / Turnbull, J. (Author) / Davis, K. J. (Author) / Possolo, A. (Author) / Karion, A. (Author) / Sweeney, C. (Author) / Moser, B. (Author) / Hendricks, A. (Author) / Lauvaux, T. (Author) / Mays, K. (Author) / Whetstone, J. (Author) / Huang, J. (Author) / Razlivanov, Igor (Author) / Niles, N. L. (Author) / Richardson, S. J. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-02
128168-Thumbnail Image.png
Description

Large urban emissions of greenhouse gases result in large atmospheric enhancements relative to background that are easily measured. Using CO2 mole fractions and Δ14C and δ13C values of CO2 in the Los Angeles megacity observed in inland Pasadena (2006–2013) and coastal Palos Verdes peninsula (autumn 2009–2013), we have determined time

Large urban emissions of greenhouse gases result in large atmospheric enhancements relative to background that are easily measured. Using CO2 mole fractions and Δ14C and δ13C values of CO2 in the Los Angeles megacity observed in inland Pasadena (2006–2013) and coastal Palos Verdes peninsula (autumn 2009–2013), we have determined time series for CO2 contributions from fossil fuel combustion (Cff) for both sites and broken those down into contributions from petroleum and/or gasoline and natural gas burning for Pasadena. We find a 10 % reduction in Pasadena Cff during the Great Recession of 2008–2010, which is consistent with the bottom-up inventory determined by the California Air Resources Board. The isotopic variations and total atmospheric CO2 from our observations are used to infer seasonality of natural gas and petroleum combustion. The trend of CO2 contributions to the atmosphere from natural gas combustion is out of phase with the seasonal cycle of total natural gas combustion seasonal patterns in bottom-up inventories but is consistent with the seasonality of natural gas usage by the area's electricity generating power plants. For petroleum, the inferred seasonality of CO2 contributions from burning petroleum is delayed by several months relative to usage indicated by statewide gasoline taxes. Using the high-resolution Hestia-LA data product to compare Cff from parts of the basin sampled by winds at different times of year, we find that variations in observed fossil fuel CO2 reflect seasonal variations in wind direction. The seasonality of the local CO2 excess from fossil fuel combustion along the coast, on Palos Verdes peninsula, is higher in autumn and winter than spring and summer, almost completely out of phase with that from Pasadena, also because of the annual variations of winds in the region. Variations in fossil fuel CO2 signals are consistent with sampling the bottom-up Hestia-LA fossil CO2 emissions product for sub-city source regions in the LA megacity domain when wind directions are considered.

ContributorsNewman, Sally (Author) / Xu, Xiaomei (Author) / Gurney, Kevin (Author) / Hsu, Ying Kuang (Author) / Li, King Fai (Author) / Jiang, Xun (Author) / Keeling, Ralph (Author) / Feng, Sha (Author) / O'Keeffe, Darragh (Author) / Patarasuk, Risa (Author) / Wong, Kam Weng (Author) / Rao, Preeti (Author) / Fischer, Marc L. (Author) / Yung, Yuk L. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-03-22
128192-Thumbnail Image.png
Description

Recent advances in fossil fuel CO2 (FFCO2) emission inventories enable sensitivity tests of simulated atmospheric CO2 concentrations to sub-annual variations in FFCO2 emissions and what this implies for the interpretation of observed CO2. Six experiments are conducted to investigate the potential impact of three cycles of FFCO2 emission variability (diurnal,

Recent advances in fossil fuel CO2 (FFCO2) emission inventories enable sensitivity tests of simulated atmospheric CO2 concentrations to sub-annual variations in FFCO2 emissions and what this implies for the interpretation of observed CO2. Six experiments are conducted to investigate the potential impact of three cycles of FFCO2 emission variability (diurnal, weekly and monthly) using a global tracer transport model. Results show an annual FFCO2 rectification varying from −1.35 to +0.13 ppm from the combination of all three cycles. This rectification is driven by a large negative diurnal FFCO2 rectification due to the covariation of diurnal FFCO2 emissions and diurnal vertical mixing, as well as a smaller positive seasonal FFCO2 rectification driven by the covariation of monthly FFCO2 emissions and monthly atmospheric transport. The diurnal FFCO2 emissions are responsible for a diurnal FFCO2 concentration amplitude of up to 9.12 ppm at the grid cell scale. Similarly, the monthly FFCO2 emissions are responsible for a simulated seasonal CO2 amplitude of up to 6.11 ppm at the grid cell scale. The impact of the diurnal FFCO2 emissions, when only sampled in the local afternoon, is also important, causing an increase of +1.13 ppmv at the grid cell scale. The simulated CO2 concentration impacts from the diurnally and seasonally varying FFCO2 emissions are centered over large source regions in the Northern Hemisphere, extending to downwind regions. This study demonstrates the influence of sub-annual variations in FFCO2 emissions on simulated CO2 concentration and suggests that inversion studies must take account of these variations in the affected regions.

ContributorsZhang, Xia (Author) / Gurney, Kevin (Author) / Rayner, Peter (Author) / Baker, David (Author) / Liu, Yu-ping (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-19
128246-Thumbnail Image.png
Description

Protected areas are a cornerstone of biodiversity conservation, and increasingly, conservation science is integrating ecological and social considerations in park management. Indeed, both social and ecological factors need to be considered to understand processes that lead to changes in environmental conditions. Here, we use a social-ecological systems lens to examine

Protected areas are a cornerstone of biodiversity conservation, and increasingly, conservation science is integrating ecological and social considerations in park management. Indeed, both social and ecological factors need to be considered to understand processes that lead to changes in environmental conditions. Here, we use a social-ecological systems lens to examine changes in governance through time in an extensive regional protected area network, the Great Barrier Reef Marine Park. We studied the peer-reviewed and nonpeer-reviewed literature to develop an understanding of governance of the Great Barrier Reef Marine Park and its management changes through time. In particular, we examined how interacting and changing property rights, as designated by the evolving marine protected area network and other institutional changes (e.g., fisheries management), defined multiple goods and ecosystem services and altered who could benefit from them.

The rezoning of the Great Barrier Reef Marine Park in 2004 substantially altered the types and distribution of property rights and associated benefits from ecosystem goods and services. Initially, common-pool resources were enjoyed as common and private benefits at the expense of public goods (overexploited fisheries and reduced biodiversity and ecosystem health). The rezoning redefined the available goods and benefits and who could benefit, prioritizing public goods and benefits (i.e., biodiversity conservation), and inducing private costs (through reduced fishing). We also found that the original conceptualization of the step-wise progression of property rights from user to owner oversimplifies property rights based on its division into operational and collective-choice rule-making levels. Instead, we suggest that a diversity of available management tools implemented simultaneously can result in interactions that are seldom fully captured by the original conceptualization of the bundling of property rights. Understanding the complexities associated with overlapping property rights and multiple goods and ecosystem services, particularly within large-scale systems, can help elucidate the source and nature of some of the governance challenges that large protected areas are facing.

Created2015
128248-Thumbnail Image.png
Description

In order to improve the efficiency of government spending, it is necessary for the decentralized irrigation management to gain support from local institutions. Efficient institutions take on several distinct configurations in different irrigation districts. In this research, we upgrade Tang’s (1992) framework focusing on incentives, to a framework that includes

In order to improve the efficiency of government spending, it is necessary for the decentralized irrigation management to gain support from local institutions. Efficient institutions take on several distinct configurations in different irrigation districts. In this research, we upgrade Tang’s (1992) framework focusing on incentives, to a framework that includes institutional incentives and coordination. Within the framework, we then classify 5 institutional variables: water pricing reform (P), government funding (F), coordination by administration (C), having formal monitors (M) and self-organized management (S). This article processes the data obtained through a field survey (2009–2011) in 20 of China’s southern counties, where they implement the “Small-scale Irrigation and Water Conservancy Key Counties Construction (Key Counties Construction)”, a national project supported by the central government. Next, it applies Data Envelopment Analysis (DEA) to measure the efficiency of government spending and uses Qualitative Comparative Analysis (QCA) to extract efficient institutional configurations. It concludes that there are generally three types of institutional configurations able to improve the efficiency of government spending, which are respectively: “government funding combined with coordination by administration”, “water pricing reform combined with self-organized management and coordination by administration or water pricing reform combined with self-organized management and government funding and formal monitors” and “self-organized management”. Among these, the second configuration is a mixed governance structure with multiple institutions coexisting, and this configuration occurs in the most efficient key counties. For that reason, it is viewed as the mainstream irrigation management approach, and we expect it to be the development trend in the future. Although Chinese irrigation policies are formalizing effective local institutions, they are still not sufficient. Future policies are needed to 1) promote institutions of government support for water laws in order to build stable expectations for both water user associations (WUAs) and farmers, 2) guide water pricing reform by ensuring farmers’ water rights and regulating water markets, and 3) provide opportunities for hiring professional monitors and crafting formal rules.

Created2016-02-01
128236-Thumbnail Image.png
Description

Megacities are major sources of anthropogenic fossil fuel CO2(FFCO2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO2 emissions over the Los Angeles (LA) megacity area. The Weather

Megacities are major sources of anthropogenic fossil fuel CO2(FFCO2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO2 emissions over the Los Angeles (LA) megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled to a very high-resolution FFCO2 emission product, Hestia-LA, to simulate atmospheric CO2 concentrations across the LA megacity at spatial resolutions as fine as  ∼  1 km. We evaluated multiple WRF configurations, selecting one that minimized errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010). Our results show no significant difference between moderate-resolution (4 km) and high-resolution (1.3 km) simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution) and Hestia-LA (1.3 km resolution) fossil fuel CO2 emission products to evaluate the impact of the spatial resolution of the CO2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO2 concentrations. We find that high spatial resolution in the fossil fuel CO2 emissions is more important than in the atmospheric model to capture CO2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO2 fields reflect the coverage of individual measurement sites when a statistically significant number of sites observe emissions from a specific source or location. We conclude that elevated atmospheric CO2 concentrations over the LA megacity are composed of multiple fine-scale plumes rather than a single homogenous urban dome. Furthermore, we conclude that FFCO2 emissions monitoring in the LA megacity requires FFCO2 emissions modelling with  ∼1 km resolution because coarser-resolution emissions modelling tends to overestimate the observational constraints on the emissions estimates.

ContributorsFeng, Sha (Author) / Lauvaux, Thomas (Author) / Newman, Sally (Author) / Rao, Preeti (Author) / Ahmadov, Ravan (Author) / Deng, Aijun (Author) / Diaz-Isaac, Liza I. (Author) / Duren, Riley M. (Author) / Fischer, Marc L. (Author) / Gerbig, Christoph (Author) / Gurney, Kevin (Author) / Huang, Jianhua (Author) / Jeong, Seongeun (Author) / Li, Zhijin (Author) / Miller, Charles E. (Author) / O'Keeffe, Darragh (Author) / Patarasuk, Risa (Author) / Sander, Stanley P. (Author) / Song, Yang (Author) / Wong, Kam W. (Author) / Yung, Yuk L. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-07-22
128237-Thumbnail Image.png
Description

There is an increasing demand in higher education institutions for training in complex environmental problems. Such training requires a careful mix of conventional methods and innovative solutions, a task not always easy to accomplish. In this paper we review literature on this theme, highlight relevant advances in the pedagogical literature,

There is an increasing demand in higher education institutions for training in complex environmental problems. Such training requires a careful mix of conventional methods and innovative solutions, a task not always easy to accomplish. In this paper we review literature on this theme, highlight relevant advances in the pedagogical literature, and report on some examples resulting from our recent efforts to teach complex environmental issues. The examples range from full credit courses in sustainable development and research methods to project-based and in-class activity units. A consensus from the literature is that lectures are not sufficient to fully engage students in these issues. A conclusion from the review of examples is that problem-based and project-based, e.g., through case studies, experiential learning opportunities, or real-world applications, learning offers much promise. This could greatly be facilitated by online hubs through which teachers, students, and other members of the practitioner and academic community share experiences in teaching and research, the way that we have done here.

ContributorsBan, Natalie C. (Author) / Boyd, Emily (Author) / Cox, Michael (Author) / Meek, Chanda L. (Author) / Schoon, Michael (Author) / Villamayor-Tomas, Sergio (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2015
127975-Thumbnail Image.png
Description

We present a high-resolution atmospheric inversion system combining a Lagrangian Particle Dispersion Model (LPDM) and the Weather Research and Forecasting model (WRF), and test the impact of assimilating meteorological observation on transport accuracy. A Four Dimensional Data Assimilation (FDDA) technique continuously assimilates meteorological observations from various observing systems into the

We present a high-resolution atmospheric inversion system combining a Lagrangian Particle Dispersion Model (LPDM) and the Weather Research and Forecasting model (WRF), and test the impact of assimilating meteorological observation on transport accuracy. A Four Dimensional Data Assimilation (FDDA) technique continuously assimilates meteorological observations from various observing systems into the transport modeling system, and is coupled to the high resolution CO2 emission product Hestia to simulate the atmospheric mole fractions of CO2. For the Indianapolis Flux Experiment (INFLUX) project, we evaluated the impact of assimilating different meteorological observation systems on the linearized adjoint solutions and the CO2 inverse fluxes estimated using observed CO2 mole fractions from 11 out of 12 communications towers over Indianapolis for the Sep.-Nov. 2013 period. While assimilating WMO surface measurements improved the simulated wind speed and direction, their impact on the planetary boundary layer (PBL) was limited. Simulated PBL wind statistics improved significantly when assimilating upper-air observations from the commercial airline program Aircraft Communications Addressing and Reporting System (ACARS) and continuous ground-based Doppler lidar wind observations. Wind direction mean absolute error (MAE) decreased from 26 to 14 degrees and the wind speed MAE decreased from 2.0 to 1.2 m s-1, while the bias remains small in all configurations (< 6 degrees and 0.2 m s-1). Wind speed MAE and ME are larger in daytime than in nighttime. PBL depth MAE is reduced by ~10%, with little bias reduction. The inverse results indicate that the spatial distribution of CO2 inverse fluxes were affected by the model performance while the overall flux estimates changed little across WRF simulations when aggregated over the entire domain. Our results show that PBL wind observations are a potent tool for increasing the precision of urban meteorological reanalyses, but that the impact on inverse flux estimates is dependent on the specific urban environment.

ContributorsDeng, Aijun (Author) / Lauvaux, Thomas (Author) / Davis, Kenneth J. (Author) / Gaudet, Brian J. (Author) / Miles, Natasha (Author) / Richardson, Scott J. (Author) / Wu, Kai (Author) / Sarmiento, Daniel P. (Author) / Hardesty, R. Michael (Author) / Bonin, Timothy A. (Author) / Brewer, W. Alan (Author) / Gurney, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-23