Matching Items (104)
150070-Thumbnail Image.png
Description
This dissertation creates models of past potential vegetation in the Southern Levant during most of the Holocene, from the beginnings of farming through the rise of urbanized civilization (12 to 2.5 ka BP). The time scale encompasses the rise and collapse of the earliest agrarian civilizations in this region. The

This dissertation creates models of past potential vegetation in the Southern Levant during most of the Holocene, from the beginnings of farming through the rise of urbanized civilization (12 to 2.5 ka BP). The time scale encompasses the rise and collapse of the earliest agrarian civilizations in this region. The archaeological record suggests that increases in social complexity were linked to climatic episodes (e.g., favorable climatic conditions coincide with intervals of prosperity or marked social development such as the Neolithic Revolution ca. 11.5 ka BP, the Secondary Products Revolution ca. 6 ka BP, and the Middle Bronze Age ca. 4 ka BP). The opposite can be said about periods of climatic deterioration, when settled villages were abandoned as the inhabitants returned to nomadic or semi nomadic lifestyles (e.g., abandonment of the largest Neolithic farming towns after 8 ka BP and collapse of Bronze Age towns and cities after 3.5 ka BP during the Late Bronze Age). This study develops chronologically refined models of past vegetation from 12 to 2.5 ka BP, at 500 year intervals, using GIS, remote sensing and statistical modeling tools (MAXENT) that derive from species distribution modeling. Plants are sensitive to alterations in their environment and respond accordingly. Because of this, they are valuable indicators of landscape change. An extensive database of historical and field gathered observations was created. Using this database as well as environmental variables that include temperature and precipitation surfaces for the whole study period (also at 500 year intervals), the potential vegetation of the region was modeled. Through this means, a continuous chronology of potential vegetation of the Southern Levantwas built. The produced paleo-vegetation models generally agree with the proxy records. They indicate a gradual decline of forests and expansion of steppe and desert throughout the Holocene, interrupted briefly during the Mid Holocene (ca. 4 ka BP, Middle Bronze Age). They also suggest that during the Early Holocene, forest areas were extensive, spreading into the Northern Negev. The two remaining forested areas in the Northern and Southern Plateau Region in Jordan were also connected during this time. The models also show general agreement with the major cultural developments, with forested areas either expanding or remaining stable during prosperous periods (e.g., Pre Pottery Neolithic and Middle Bronze Age), and significantly contracting during moments of instability (e.g., Late Bronze Age).
ContributorsSoto-Berelov, Mariela (Author) / Fall, Patricia L. (Thesis advisor) / Myint, Soe (Committee member) / Turner, Billie L (Committee member) / Falconer, Steven (Committee member) / Arizona State University (Publisher)
Created2011
150231-Thumbnail Image.png
Description
In this thesis I introduce a new direction to computing using nonlinear chaotic dynamics. The main idea is rich dynamics of a chaotic system enables us to (1) build better computers that have a flexible instruction set, and (2) carry out computation that conventional computers are not good at it.

In this thesis I introduce a new direction to computing using nonlinear chaotic dynamics. The main idea is rich dynamics of a chaotic system enables us to (1) build better computers that have a flexible instruction set, and (2) carry out computation that conventional computers are not good at it. Here I start from the theory, explaining how one can build a computing logic block using a chaotic system, and then I introduce a new theoretical analysis for chaos computing. Specifically, I demonstrate how unstable periodic orbits and a model based on them explains and predicts how and how well a chaotic system can do computation. Furthermore, since unstable periodic orbits and their stability measures in terms of eigenvalues are extractable from experimental times series, I develop a time series technique for modeling and predicting chaos computing from a given time series of a chaotic system. After building a theoretical framework for chaos computing I proceed to architecture of these chaos-computing blocks to build a sophisticated computing system out of them. I describe how one can arrange and organize these chaos-based blocks to build a computer. I propose a brand new computer architecture using chaos computing, which shifts the limits of conventional computers by introducing flexible instruction set. Our new chaos based computer has a flexible instruction set, meaning that the user can load its desired instruction set to the computer to reconfigure the computer to be an implementation for the desired instruction set. Apart from direct application of chaos theory in generic computation, the application of chaos theory to speech processing is explained and a novel application for chaos theory in speech coding and synthesizing is introduced. More specifically it is demonstrated how a chaotic system can model the natural turbulent flow of the air in the human speech production system and how chaotic orbits can be used to excite a vocal tract model. Also as another approach to build computing system based on nonlinear system, the idea of Logical Stochastic Resonance is studied and adapted to an autoregulatory gene network in the bacteriophage λ.
ContributorsKia, Behnam (Author) / Ditto, William (Thesis advisor) / Huang, Liang (Committee member) / Lai, Ying-Cheng (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
150301-Thumbnail Image.png
Description
This thesis focuses on the theoretical work done to determine thermodynamic properties of a chalcopyrite thin-film material for use as a photovoltaic material in a tandem device. The material of main focus here is ZnGeAs2, which was chosen for the relative abundance of constituents, favorable photovoltaic properties, and good lattice

This thesis focuses on the theoretical work done to determine thermodynamic properties of a chalcopyrite thin-film material for use as a photovoltaic material in a tandem device. The material of main focus here is ZnGeAs2, which was chosen for the relative abundance of constituents, favorable photovoltaic properties, and good lattice matching with ZnSnP2, the other component in this tandem device. This work is divided into two main chapters, which will cover: calculations and method to determine the formation energy and abundance of native point defects, and a model to calculate the vapor pressure over a ternary material from first-principles. The purpose of this work is to guide experimental work being done in tandem to synthesize ZnGeAs2 in thin-film form with high enough quality such that it can be used as a photovoltaic. Since properties of photovoltaic depend greatly on defect concentrations and film quality, a theoretical understanding of how laboratory conditions affect these properties is very valuable. The work done here is from first-principles and utilizes density functional theory using the local density approximation. Results from the native point defect study show that the zinc vacancy (VZn) and the germanium antisite (GeZn) are the more prominent defects; which most likely produce non-stoichiometric films. The vapor pressure model for a ternary system is validated using known vapor pressure for monatomic and binary test systems. With a valid ternary system vapor pressure model, results show there is a kinetic barrier to decomposition for ZnGeAs2.
ContributorsTucker, Jon R (Author) / Van Schilfgaarde, Mark (Thesis advisor) / Newman, Nathan (Committee member) / Adams, James (Committee member) / Arizona State University (Publisher)
Created2011
152284-Thumbnail Image.png
Description
Electromigration in metal interconnects is the most pernicious failure mechanism in semiconductor integrated circuits (ICs). Early electromigration investigations were primarily focused on aluminum interconnects for silicon-based ICs. An alternative metallization compatible with gallium arsenide (GaAs) was required in the development of high-powered radio frequency (RF) compound semiconductor devices operating at

Electromigration in metal interconnects is the most pernicious failure mechanism in semiconductor integrated circuits (ICs). Early electromigration investigations were primarily focused on aluminum interconnects for silicon-based ICs. An alternative metallization compatible with gallium arsenide (GaAs) was required in the development of high-powered radio frequency (RF) compound semiconductor devices operating at higher current densities and elevated temperatures. Gold-based metallization was implemented on GaAs devices because it uniquely forms a very low resistance ohmic contact and gold interconnects have superior electrical and thermal conductivity properties. Gold (Au) was also believed to have improved resistance to electromigration due to its higher melting temperature, yet electromigration reliability data on passivated Au interconnects is scarce and inadequate in the literature. Therefore, the objective of this research was to characterize the electromigration lifetimes of passivated Au interconnects under precisely controlled stress conditions with statistically relevant quantities to obtain accurate model parameters essential for extrapolation to normal operational conditions. This research objective was accomplished through measurement of electromigration lifetimes of large quantities of passivated electroplated Au interconnects utilizing high-resolution in-situ resistance monitoring equipment. Application of moderate accelerated stress conditions with a current density limited to 2 MA/cm2 and oven temperatures in the range of 300°C to 375°C avoided electrical overstress and severe Joule-heated temperature gradients. Temperature coefficients of resistance (TCRs) were measured to determine accurate Joule-heated Au interconnect film temperatures. A failure criterion of 50% resistance degradation was selected to prevent thermal runaway and catastrophic metal ruptures that are problematic of open circuit failure tests. Test structure design was optimized to reduce resistance variation and facilitate failure analysis. Characterization of the Au microstructure yielded a median grain size of 0.91 ìm. All Au lifetime distributions followed log-normal distributions and Black's model was found to be applicable. An activation energy of 0.80 ± 0.05 eV was measured from constant current electromigration tests at multiple temperatures. A current density exponent of 1.91 was extracted from multiple current densities at a constant temperature. Electromigration-induced void morphology along with these model parameters indicated grain boundary diffusion is dominant and the void nucleation mechanism controlled the failure time.
ContributorsKilgore, Stephen (Author) / Adams, James (Thesis advisor) / Schroder, Dieter (Thesis advisor) / Krause, Stephen (Committee member) / Gaw, Craig (Committee member) / Arizona State University (Publisher)
Created2013
152183-Thumbnail Image.png
Description
Two critical limitations for hyperspatial imagery are higher imagery variances and large data sizes. Although object-based analyses with a multi-scale framework for diverse object sizes are the solution, more data sources and large amounts of testing at high costs are required. In this study, I used tree density segmentation as

Two critical limitations for hyperspatial imagery are higher imagery variances and large data sizes. Although object-based analyses with a multi-scale framework for diverse object sizes are the solution, more data sources and large amounts of testing at high costs are required. In this study, I used tree density segmentation as the key element of a three-level hierarchical vegetation framework for reducing those costs, and a three-step procedure was used to evaluate its effects. A two-step procedure, which involved environmental stratifications and the random walker algorithm, was used for tree density segmentation. I determined whether variation in tone and texture could be reduced within environmental strata, and whether tree density segmentations could be labeled by species associations. At the final level, two tree density segmentations were partitioned into smaller subsets using eCognition in order to label individual species or tree stands in two test areas of two tree densities, and the Z values of Moran's I were used to evaluate whether imagery objects have different mean values from near segmentations as a measure of segmentation accuracy. The two-step procedure was able to delineating tree density segments and label species types robustly, compared to previous hierarchical frameworks. However, eCognition was not able to produce detailed, reasonable image objects with optimal scale parameters for species labeling. This hierarchical vegetation framework is applicable for fine-scale, time-series vegetation mapping to develop baseline data for evaluating climate change impacts on vegetation at low cost using widely available data and a personal laptop.
ContributorsLiau, Yan-ting (Author) / Franklin, Janet (Thesis advisor) / Turner, Billie (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2013
151928-Thumbnail Image.png
Description
Land transformation under conditions of rapid urbanization has significantly altered the structure and functioning of Earth's systems. Land fragmentation, a characteristic of land transformation, is recognized as a primary driving force in the loss of biological diversity worldwide. However, little is known about its implications in complex urban settings where

Land transformation under conditions of rapid urbanization has significantly altered the structure and functioning of Earth's systems. Land fragmentation, a characteristic of land transformation, is recognized as a primary driving force in the loss of biological diversity worldwide. However, little is known about its implications in complex urban settings where interaction with social dynamics is intense. This research asks: How do patterns of land cover and land fragmentation vary over time and space, and what are the socio-ecological drivers and consequences of land transformation in a rapidly growing city? Using Metropolitan Phoenix as a case study, the research links pattern and process relationships between land cover, land fragmentation, and socio-ecological systems in the region. It examines population growth, water provision and institutions as major drivers of land transformation, and the changes in bird biodiversity that result from land transformation. How to manage socio-ecological systems is one of the biggest challenges of moving towards sustainability. This research project provides a deeper understanding of how land transformation affects socio-ecological dynamics in an urban setting. It uses a series of indices to evaluate land cover and fragmentation patterns over the past twenty years, including land patch numbers, contagion, shapes, and diversities. It then generates empirical evidence on the linkages between land cover patterns and ecosystem properties by exploring the drivers and impacts of land cover change. An interdisciplinary approach that integrates social, ecological, and spatial analysis is applied in this research. Findings of the research provide a documented dataset that can help researchers study the relationship between human activities and biotic processes in an urban setting, and contribute to sustainable urban development.
ContributorsZhang, Sainan (Author) / Boone, Christopher G. (Thesis advisor) / York, Abigail M. (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2013
152101-Thumbnail Image.png
Description
This thesis is a qualitative research study that focuses on siblings of children with Autistic Spectrum Disorder (ASD). Even though it is expected that having a child with ASD in the family will influence the whole family including siblings of the child with ASD, the sibling population is rarely included

This thesis is a qualitative research study that focuses on siblings of children with Autistic Spectrum Disorder (ASD). Even though it is expected that having a child with ASD in the family will influence the whole family including siblings of the child with ASD, the sibling population is rarely included in research related to children with ASD, and there is only limited services available for them. This exploratory study (n=6) is aimed at better understanding the siblings' lives in their family settings in order to identify the siblings' unmet needs and determine how they have been influenced by the child with ASD. This study is also aimed at identifying the most appropriate support for the siblings to help them cope better. The study followed the Resiliency Model of Family Stress, Adjustment, and Adaptation and a narrative theory approach. An in-depth interview with the parents was conducted for the study, so the findings reflect the parents' perception of the siblings. All the themes emerged into two categories: life in the family setting and supports. The findings indicate that the families are striving for balance between the siblings and the children with ASD, but still tend to focus more on the children with ASD. Also, the families tend to have autonomous personal support systems. The parents tend to perceive that these personal support systems are good enough for the siblings; therefore, the parents do not feel that formal support for the siblings was necessary. As a result of the findings, recommendations are made for the organizations that work with individuals with ASD to provide more appropriate services for the families of children with ASD, including siblings. Also, recommendations are made for future studies to clarify more factors related to the siblings due to the limitation of this study; the siblings' lives were reflected vicariously via the parents.
ContributorsJeong, Seong Hae (Author) / Marsiglia, Flavio F (Thesis advisor) / Ayers, Stephanie (Committee member) / Adams, James (Committee member) / Arizona State University (Publisher)
Created2013
150754-Thumbnail Image.png
Description
This report will review the mechanical and microstructural properties of the refractory element rhenium (Re) deposited using Laser Additive Manufacturing (LAM). With useable structural strength over 2200 °C, existing applications up to 2760 °C, very high strength, ductility and chemical resistance, interest in Re is understandable. This study includes data

This report will review the mechanical and microstructural properties of the refractory element rhenium (Re) deposited using Laser Additive Manufacturing (LAM). With useable structural strength over 2200 °C, existing applications up to 2760 °C, very high strength, ductility and chemical resistance, interest in Re is understandable. This study includes data about tensile properties including tensile data up to 1925 °C, fracture modes, fatigue and microstructure including deformation systems and potential applications of that information. The bulk mechanical test data will be correlated with nanoindentation and crystallographic examination. LAM properties are compared to the existing properties found in the literature for other manufacturing processes. The literature indicates that Re has three significant slip systems but also twins as part of its deformation mechanisms. While it follows the hcp metal characteristics for deformation, it has interesting and valuable extremes such as high work hardening, potentially high strength, excellent wear resistance and superior elevated temperature strength. These characteristics are discussed in detail.
ContributorsAdams, Robbie (Author) / Chawla, Nikhilesh (Thesis advisor) / Adams, James (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
150551-Thumbnail Image.png
Description
Complex dynamical systems consisting interacting dynamical units are ubiquitous in nature and society. Predicting and reconstructing nonlinear dynamics of units and the complex interacting networks among them serves the base for the understanding of a variety of collective dynamical phenomena. I present a general method to address the two outstanding

Complex dynamical systems consisting interacting dynamical units are ubiquitous in nature and society. Predicting and reconstructing nonlinear dynamics of units and the complex interacting networks among them serves the base for the understanding of a variety of collective dynamical phenomena. I present a general method to address the two outstanding problems as a whole based solely on time-series measurements. The method is implemented by incorporating compressive sensing approach that enables an accurate reconstruction of complex dynamical systems in terms of both nodal equations that determines the self-dynamics of units and detailed coupling patterns among units. The representative advantages of the approach are (i) the sparse data requirement which allows for a successful reconstruction from limited measurements, and (ii) general applicability to identical and nonidentical nodal dynamics, and to networks with arbitrary interacting structure, strength and sizes. Another two challenging problem of significant interest in nonlinear dynamics: (i) predicting catastrophes in nonlinear dynamical systems in advance of their occurrences and (ii) predicting the future state for time-varying nonlinear dynamical systems, can be formulated and solved in the framework of compressive sensing using only limited measurements. Once the network structure can be inferred, the dynamics behavior on them can be investigated, for example optimize information spreading dynamics, suppress cascading dynamics and traffic congestion, enhance synchronization, game dynamics, etc. The results can yield insights to control strategies design in the real-world social and natural systems. Since 2004, there has been a tremendous amount of interest in graphene. The most amazing feature of graphene is that there exists linear energy-momentum relationship when energy is low. The quasi-particles inside the system can be treated as chiral, massless Dirac fermions obeying relativistic quantum mechanics. Therefore, the graphene provides one perfect test bed to investigate relativistic quantum phenomena, such as relativistic quantum chaotic scattering and abnormal electron paths induced by klein tunneling. This phenomenon has profound implications to the development of graphene based devices that require stable electronic properties.
ContributorsYang, Rui (Author) / Lai, Ying-Cheng (Thesis advisor) / Duman, Tolga M. (Committee member) / Akis, Richard (Committee member) / Huang, Liang (Committee member) / Arizona State University (Publisher)
Created2012
150722-Thumbnail Image.png
Description
In 2022, integrated circuit interconnects will approach 10 nm and the diffusion barrier layers needed to ensure long lasting devices will be at 1 nm. This dimension means the interconnect will be dominated by the interface and it has been shown the interface is currently eroding device performance. The standard

In 2022, integrated circuit interconnects will approach 10 nm and the diffusion barrier layers needed to ensure long lasting devices will be at 1 nm. This dimension means the interconnect will be dominated by the interface and it has been shown the interface is currently eroding device performance. The standard interconnect system has three layers - a Copper metal core, a Tantalum Adhesion layer and a Tantalum Nitride Diffusion Barrier Layer. An alternate interconnect schema is a Tantalum Nitride barrier layer and Silver as a metal. The adhesion layer is removed from the system along with changing to an alternate, low resistivity metal. First principles are used to assess the interface of the Silver and Tantalum Nitride. Several stoichiometric 1:1 Tantalum Nitride polymorphs are assessed and it is found that the Fe2P crystal structure is actually the most stable crystal structure which is at odds with the published phase diagram for ambient crystal structure. The surface stability of Fe2P-TaN is assessed and the absorption enthalpy of Silver adatoms is calculated. Finally, the thermodynamic stability of the TaN-Ag interconnect system is assessed.
ContributorsGrumski, Michael (Author) / Adams, James (Thesis advisor) / Krause, Stephen (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2012