Matching Items (12)
Description
Restraint stress is the most commonly used laboratory stressor. It is difficult to characterize as psychological or physical, because past studies show psychological features, but the nature of confinement adds a physical dimension. This was the first study to investigate how experience with restraint stress affects brain response to the

Restraint stress is the most commonly used laboratory stressor. It is difficult to characterize as psychological or physical, because past studies show psychological features, but the nature of confinement adds a physical dimension. This was the first study to investigate how experience with restraint stress affects brain response to the next stress without a physical burden. Pair-housed adult male rats were transported to a novel context and restrained or left undisturbed (6hr). The next day, rats were returned to the same context and were either restrained or left undisturbed in the context (n=8/group). After 90min, rats were euthanized to determine functional activation in limbic structures using Fos immunohistochemistry and to measure HPA axis reactivity through blood serum corticosterone levels. Regardless of day 1 experience, context exposure on day 2 enhanced Fos expression in CA1 and CA3 of the hippocampus, basolateral amygdala, and central amygdala. Conversely, other regions and corticosterone levels demonstrated modulation from the previous day's experience. Specifically, rats that were placed back into the restraint context but not restrained on day 2 showed enhanced Fos expression in the dentate gyrus suprapyramidal blade (DGSup), and infralimbic cortex (IL). Also Fos expression was attenuated in rats that received two restraint exposures in the IL and medial amygdala (MEA), suggesting habituation. Only the DG infrapyramidal blade (DGInf) showed enhanced Fos expression to restraint on day 2 without influence of the previous day. While context predominately directed Fos activation, prior experience with restraint influenced Fos expression in the DGSup, IL, MEA and corticosterone levels to support restraint having psychological components.
ContributorsAnouti, P. Danya (Author) / Conrad, D. Cheryl (Thesis director) / Hammer, Ronald (Committee member) / Hoffman, N. Ann (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
152023-Thumbnail Image.png
Description
Intermittent social defeat stress induces cross-sensitization to psychostimulants and escalation of drug self-administration. These behaviors could result from the stress-induced neuroadaptation in the mesocorticolimbic dopamine circuit. Brain-derived neurotrophic factor (BDNF) in the ventral tegmental area (VTA) is persistently elevated after social defeat stress, and may contribute to the stress-induced neuroadaptation

Intermittent social defeat stress induces cross-sensitization to psychostimulants and escalation of drug self-administration. These behaviors could result from the stress-induced neuroadaptation in the mesocorticolimbic dopamine circuit. Brain-derived neurotrophic factor (BDNF) in the ventral tegmental area (VTA) is persistently elevated after social defeat stress, and may contribute to the stress-induced neuroadaptation in the mesocorticolimbic dopamine circuit. BDNF modulates synaptic plasticity, and facilitates stress- and drug-induced neuroadaptations in the mesocorticolimbic system. The present research examined the role of mesolimbic BDNF signaling in social defeat stress-induced cross-sensitization to psychostimulants and the escalation of cocaine self-administration in rats. We measured drug taking behavior with the acquisition, progressive ratio, and binge paradigms during self-administration. With BDNF overexpression in the ventral tegmental area (VTA), single social defeat stress-induced cross-sensitization to amphetamine (AMPH) was significantly potentiated. VTA-BDNF overexpression also facilitates acquisition of cocaine self-administration, and a positive correlation between the level of VTA BDNF and drug intake during 12 hour binge was observed. We also found significant increase of DeltaFosB expression in the nucleus accumbens (NAc), the projection area of the VTA, in rats received intra-VTA BDNF overexpression. We therefore examined whether BDNF signaling in the NAc is important for social defeat stress-induced cross-sensitization by knockdown of the receptor of BDNF (neurotrophin tyrosine kinase receptor type 2, TrkB) there. NAc TrkB knockdown prevented social defeat stress-induced cross-sensitization to psychostimulant. Also social defeat stress-induced increase of DeltaFosB in the NAc was prevented by TrkB knockdown. Several other factors up-regulated by stress, such as the GluA1 subunit of Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and BDNF in the VTA were also prevented. We conclude that BDNF signaling in the VTA increases social defeat stress-induced vulnerability to psychostimulants, manifested as potentiated cross-sensitization/sensitization to AMPH and escalation of cocaine self-administration. Also BDNF signaling in the NAc is necessary for the stress-induced neuroadaptation and behavioral sensitization to psychostimulants. Therefore, TrkB in the NAc could be a therapeutic target to prevent stress-induced vulnerability to drugs of abuse in the future. DeltaFosB in the NAc shell could be a neural substrate underlying persistent cross-sensitization and augmented cocaine self-administration induced by social defeat stress.
ContributorsWang, Junshi (Author) / Hammer, Ronald (Thesis advisor) / Feuerstein, Burt (Committee member) / Nikulina, Ella (Committee member) / Neisewander, Janet (Committee member) / Arizona State University (Publisher)
Created2013
131741-Thumbnail Image.png
Description
Mitochondrial methionyl-tRNA-formyltransferase (MTFMT) is essential for mitochondrial protein translation. The MTFMT gene encodes for an enzyme of the same name, which acts to formylate the methionine of mitochondrial Met-tRNA(Met). In Homo sapiens, MTFMT-formylated-tRNA is an initiator and elongator for the synthesis of 13 mitochondrially-encoded proteins in complexes I,

Mitochondrial methionyl-tRNA-formyltransferase (MTFMT) is essential for mitochondrial protein translation. The MTFMT gene encodes for an enzyme of the same name, which acts to formylate the methionine of mitochondrial Met-tRNA(Met). In Homo sapiens, MTFMT-formylated-tRNA is an initiator and elongator for the synthesis of 13 mitochondrially-encoded proteins in complexes I, III and IV of the ETC. To understand this mechanism, it is necessary to perform a comprehensive analysis of energy metabolism and oxidative phosphorylation (OXPHOS) among impacted patients. Alterations to this gene vary, with the most documented as a single-splice-site mutation (c.626C>T). Here, we discuss MTFMT involvement in mitochondrial protein translation and neurodegenerative disorders, such as Leigh Syndrome and combined OXPHOS deficiency, in two families. We aim to delineate the impact of OXPHOS dysfunction in patients presenting with MTFMT mutation.
ContributorsChain, Kelsey (Author) / Chen, Qiang (Thesis director) / Rangasamy, Sampathkumar (Committee member) / Narayanan, Vinodh (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132611-Thumbnail Image.png
Description
Consequences of drug abuse and addiction affect both men and women, but women tend to rapidly progress through drug addiction phases, have higher drug dependency, and have higher relapse rates. Ovarian hormones fluctuate with female reproductive cycles and are thought to cause increased sensitivity to psychostimulants. Additionally, intermittent social defeat

Consequences of drug abuse and addiction affect both men and women, but women tend to rapidly progress through drug addiction phases, have higher drug dependency, and have higher relapse rates. Ovarian hormones fluctuate with female reproductive cycles and are thought to cause increased sensitivity to psychostimulants. Additionally, intermittent social defeat stress induces social avoidance, weight loss, and long-lasting cross-sensitization to psychostimulants, which is associated with increased FosB/ΔFosB expression in the nucleus accumbens (NAc) shell. In this study, we examined the estrous cycle in female rats on social defeat stress-induced amphetamine cross-sensitization through FosB/ΔFosB expression in the NAc shell. Every third day for ten days, we induced social defeat stress in rats through short confrontations with a lactating female resident rat and her pups. In parallel, a group of rats were handled for control. Vaginal swabs were taken daily to assess estrous stage. Ten days after the last stress exposure, rats were administered a low dose of amphetamine (0.5 mg/kg, i.p.), which induced cross-sensitization in stressed rats, evidenced by enhanced locomotor activity. Approximately 3-10 days after amphetamine challenge, brain tissue was collected for immunohistochemistry analyses. Stressed female rats had lower body weight gain, higher social avoidance, and increased FosB/ΔFosB expression in the NAc shell. Differences in FosB/ΔFosB expression in the NAc shell was also observed in handled animals in different estrous stages. Furthermore, rats in proestrous/estrous stages displayed enhanced social defeat stress-induced amphetamine cross-sensitization in comparison to rats in metestrous/diestrous stages. Elucidating the effects of the female reproductive cycle on drug use may provide a novel approach to treatments or therapies in preventing women’s stress-induced vulnerability to substance abuse.
ContributorsAzuma, Alyssa (Author) / Neisewander, Janet (Thesis director) / Nikulina, Ella (Thesis director) / Hammer, Ronald (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134691-Thumbnail Image.png
Description
Rett syndrome is a genetically based, X-linked neurodevelopmental disorder that affects 1 in 10,000 live female births. Approximately 95-97% of Rett syndrome cases are attributed to a mutation in the MECP2 gene. In the laboratory setting, key neuropathological phenotypes of Rett syndrome include small neuronal soma and nuclear size, increased

Rett syndrome is a genetically based, X-linked neurodevelopmental disorder that affects 1 in 10,000 live female births. Approximately 95-97% of Rett syndrome cases are attributed to a mutation in the MECP2 gene. In the laboratory setting, key neuropathological phenotypes of Rett syndrome include small neuronal soma and nuclear size, increased cell packing density, and abnormal dendritic branching. Our lab previously created and characterized the A140V mouse model of atypical Rett syndrome in which the males are viable. Hippocampal and cerebellar granule neurons in A140V male mice have reduced soma and nuclear size compared to wild type. We also found that components of the mTOR pathway including rictor, 4E-BP-1, and mTOR, were reduced in A140V mutant mice. Quantitative PCR analysis also showed reduced IGFPB2 expression in A140V mice along with an upward trend in AKT levels that did not meet statistical significance. The objective of this study is i) to characterize the down regulation of AKT-mTOR pathway, and ii) to examine the effect of a genetic strategy to rescue mTOR pathway deficiencies in Mecp2 mutant mouse model. Genetic rescue of the mTOR pathway downregulation was done by crossing heterozygous female A140V mice with heterozygous male Tsc2 mice. Quantitative PCR analysis of A140V_Tsc2 RNA expression supported genetic rescue of mTOR pathway components, however, more testing is needed to fully characterize the rescue effect. Western blot analysis also showed reduction in phosphorylated AKT in Mecp2 A140V and T158A mutant mice, however, more testing is still needed to characterize the mTOR pathway in A140V_Tsc2 mice. Finally, other methods, such as a pharmacological approach, or transfection to increase mTOR pathway activity in cell lines, will be tested to determine if rescue of mTOR pathway activity ameliorate the Rett syndrome phenotype.
ContributorsGerald, Brittany Madison (Author) / Newbern, Jason (Thesis director) / Narayanan, Vinodh (Committee member) / Rangasamy, Sampath (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
152966-Thumbnail Image.png
Description
Patients with schizophrenia have impaired cognitive flexibility, as evidenced by behaviors of perseveration. Cognitive impairments may be due to dysregulation of glutamate and/or loss of neuronal plasticity in the medial prefrontal cortex (mPFC). The purpose of these studies was to examine the effects of mGluR5 positive allosteric modulators (PAMs) alone

Patients with schizophrenia have impaired cognitive flexibility, as evidenced by behaviors of perseveration. Cognitive impairments may be due to dysregulation of glutamate and/or loss of neuronal plasticity in the medial prefrontal cortex (mPFC). The purpose of these studies was to examine the effects of mGluR5 positive allosteric modulators (PAMs) alone and in combination with the NMDAR antagonist MK-801, a pharmacological model of schizophrenia. An operant-based cognitive set-shifting task was utilized to assess cognitive flexibility, in vivo microdialysis procedures to measure extracellular glutamate levels in the mPFC, and diolistic labeling to assess the effects on dendritic spine density and morphology in the mPFC. Results revealed that chronic administration of the mGluR5 PAM CDPPB was able to significantly reduce the effects of chronically administered MK-801 on both behavioral perseveration and glutamate neurotransmission. Results also showed that CDPPB had no evidence of an effect on dendritic spine density or morphology, but the mGluR5 negative allosteric modulator fenobam caused significant increases in spine density and the frequency of occurrence of spines with smaller head diameters. Conclusions include that CDPPB is able to reverse MK-801 induced cognitive deficits as well as alterations in mPFC glutamate neurochemistry. The culmination of these studies add further support for targeting mGluR5 with PAMs as a novel mechanism to alleviate cognitive impairments in patients with schizophrenia.
ContributorsLaCrosse, Amber (Author) / Olive, Michael (Committee member) / Gallitano-Mendel, Amelia (Committee member) / Sanabria, Federico (Committee member) / Hammer, Ronald (Committee member) / Arizona State University (Publisher)
Created2014
153854-Thumbnail Image.png
Description
Evidence from the 20th century demonstrated that early life stress (ELS) produces long lasting neuroendocrine and behavioral effects related to an increased vulnerability towards psychiatric illnesses such as major depressive disorder, post-traumatic stress disorder, schizophrenia, and substance use disorder. Substance use disorders (SUDs) are complex neurological and behavioral psychiatric illnesses.

Evidence from the 20th century demonstrated that early life stress (ELS) produces long lasting neuroendocrine and behavioral effects related to an increased vulnerability towards psychiatric illnesses such as major depressive disorder, post-traumatic stress disorder, schizophrenia, and substance use disorder. Substance use disorders (SUDs) are complex neurological and behavioral psychiatric illnesses. The development, maintenance, and relapse of SUDs involve multiple brain systems and are affected by many variables, including socio-economic and genetic factors. Pre-clinical studies demonstrate that ELS affects many of the same systems, such as the reward circuitry and executive function involved with addiction-like behaviors. Previous research has focused on cocaine, ethanol, opiates, and amphetamine, while few studies have investigated ELS and methamphetamine (METH) vulnerability. METH is a highly addictive psychostimulant that when abused, has deleterious effects on the user and society. However, a critical unanswered question remains; how do early life experiences modulate both neural systems and behavior in adulthood? The emerging field of neuroepigenetics provides a potential answer to this question. Methyl CpG binding protein 2 (MeCP2), an epigenetic tag, has emerged as one possible mediator between initial drug use and the transition to addiction. Additionally, there are various neural systems that undergo long lasting epigenetics changes after ELS, such as the response of the hypothalamo-pituitary-adrenal (HPA) axis to stressors. Despite this, little attention has been given to the interactions between ELS, epigenetics, and addiction vulnerability. The studies described herein investigated the effects of ELS on METH self-administration (SA) in adult male rats. Next, we investigated the effects of ELS and METH SA on MeCP2 expression in the nucleus accumbens and dorsal striatum. Additionally, we investigated the effects of virally-mediated knockdown of MeCP2 expression in the nucleus accumbens core on METH SA, motivation to obtain METH under conditions of increasing behavioral demand, and reinstatement of METH-seeking in rats with and without a history of ELS. The results of these studies provide insights into potential epigenetic mechanisms by which ELS can produce an increased vulnerability to addiction in adulthood. Moreover, these studies shed light on possible novel molecular targets for treating addiction in individuals with a history of ELS.
ContributorsLewis, Candace (Author) / Olive, M. Foster (Thesis advisor) / Hammer, Ronald (Committee member) / Neisewander, Janet (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2015
154043-Thumbnail Image.png
Description
Methyl-CpG binding protein 2 (MECP2) is a widely abundant, multifunctional regulator of gene expression with highest levels of expression in mature neurons. In humans, both loss- and gain-of-function mutations of MECP2 cause mental retardation and motor dysfunction classified as either Rett Syndrome (RTT, loss-of-function) or MECP2 Duplication Syndrome (MDS, gain-of-function).

Methyl-CpG binding protein 2 (MECP2) is a widely abundant, multifunctional regulator of gene expression with highest levels of expression in mature neurons. In humans, both loss- and gain-of-function mutations of MECP2 cause mental retardation and motor dysfunction classified as either Rett Syndrome (RTT, loss-of-function) or MECP2 Duplication Syndrome (MDS, gain-of-function). At the cellular level, MECP2 mutations cause both synaptic and dendritic defects. Despite identification of MECP2 as a cause for RTT nearly 16 years ago, little progress has been made in identifying effective treatments. Investigating major cellular and molecular targets of MECP2 in model systems can help elucidate how mutation of this single gene leads to nervous system and behavioral defects, which can ultimately lead to novel therapeutic strategies for RTT and MDS. In the work presented here, I use the fruit fly, Drosophila melanogaster, as a model system to study specific cellular and molecular functions of MECP2 in neurons. First, I show that targeted expression of human MECP2 in Drosophila flight motoneurons causes impaired dendritic growth and flight behavioral performance. These effects are not caused by a general toxic effect of MECP2 overexpression in Drosophila neurons, but are critically dependent on the methyl-binding domain of MECP2. This study shows for the first time cellular consequences of MECP2 gain-of-function in Drosophila neurons. Second, I use RNA-Seq to identify KIBRA, a gene associated with learning and memory in humans, as a novel target of MECP2 involved in the dendritic growth phenotype. I confirm bidirectional regulation of Kibra by Mecp2 in mouse, highlighting the translational utility of the Drosophila model. Finally, I use this system to identify a novel role for the C-terminus in regulating the function of MECP in apoptosis and verify this finding in mammalian cell culture. In summary, this work has established Drosophila as a translational model to study the cellular effects of MECP2 gain-of-function in neurons, and provides insight into the function of MECP2 in dendritic growth and apoptosis.
ContributorsWilliams, Alison (Author) / Duch, Carsten (Thesis advisor) / Orchinik, Miles (Committee member) / Gallitano, Amelia (Committee member) / Huentelman, Matthew (Committee member) / Narayanan, Vinodh (Committee member) / Newfeld, Stuart (Committee member) / Arizona State University (Publisher)
Created2015
152705-Thumbnail Image.png
Description
Cells live in complex environments and must be able to adapt to environmental changes in order to survive. The ability of a cell to survive and thrive in a changing environment depends largely on its ability to receive and respond to extracellular signals. Initiating with receptors, signal transduction cascades begin

Cells live in complex environments and must be able to adapt to environmental changes in order to survive. The ability of a cell to survive and thrive in a changing environment depends largely on its ability to receive and respond to extracellular signals. Initiating with receptors, signal transduction cascades begin translating extracellular signals into intracellular messages. Such signaling cascades are responsible for the regulation of cellular metabolism, cell growth, cell movement, transcription, translation, proliferation and differentiation. This dissertation seeks to dissect and examine critical signaling pathways involved in the regulation of proliferation in neural stem cells (Chapter 2) and the regulation of Glioblastoma Multiforme pathogenesis (GBM; Chapter 3). In Chapter 2 of this dissertation, we hypothesize that the mTOR signaling pathway plays a significant role in the determination of neural stem cell proliferation given its control of cell growth, metabolism and survival. We describe the effect of inhibition of mTOR signaling on neural stem cell proliferation using animal models of aging. Our results show that the molecular method of targeted inhibition may result in differential effects on neural stem cell proliferation as the use of rapamycin significantly reduced proliferation while the use of metformin did not. Abnormal signaling cascades resulting in unrestricted proliferation may lead to the development of brain cancer, such as GBM. In Chapter 3 of this dissertation, we hypothesize that the inhibition of the protein kinase, aPKCλ results in halted GBM progression (invasion and proliferation) due to its central location in multiple signaling cascades. Using in-vitro and in-vivo models, we show that aPKCλ functions as a critical node in GBM signaling as both cell-autonomous and non-cell-autonomous signaling converge on aPKCλ resulting in pathogenic downstream effects. This dissertation aims to uncover the molecular mechanisms involved in cell signaling pathways which are responsible for critical cellular effects such as proliferation, invasion and transcriptional regulation.
ContributorsKusne, Yael (Author) / Sanai, Nader (Thesis advisor) / Neisewander, Janet (Thesis advisor) / Tran, Nhan (Committee member) / Hammer, Ronald (Committee member) / Narayanan, Vinodh (Committee member) / Shapiro, Joan (Committee member) / Arizona State University (Publisher)
Created2014
153409-Thumbnail Image.png
Description
Tobacco and alcohol are the most commonly abused drugs worldwide. Many people smoke and drink together, but the mechanisms of this nicotine (NIC) -ethanol (EtOH) dependence are not fully known. EtOH has been shown to affect some nicotinic acetylcholine receptors (nAChRs), which potentially underlies NIC-EtOH codependence. Ventral Tegmental Area (VTA)

Tobacco and alcohol are the most commonly abused drugs worldwide. Many people smoke and drink together, but the mechanisms of this nicotine (NIC) -ethanol (EtOH) dependence are not fully known. EtOH has been shown to affect some nicotinic acetylcholine receptors (nAChRs), which potentially underlies NIC-EtOH codependence. Ventral Tegmental Area (VTA) dopamine (DA) and γ-aminobutyric acid (GABA) neurons express different nAChR subtypes, whose net activation results in enhancement of DA release in the Prefrontal Cortex (PFC) and Nucleus Accumbens (NAc). Enhancement of DA transmission in this mesocorticolimbic system is thought to lead to rewarding properties of EtOH and NIC, clarification of which is relevant to public health and clinical diseases. The aim of this study was to elucidate pharmacological mechanisms of action employed by both NIC and EtOH through nAChRs in VTA neurons by evaluating behavioral, network, synaptic and receptor functions therein. It was hypothesized that VTA GABA neurons are controlled by α7 nAChRs on presynaptic GLUergic terminals and α6 nAChRs on presynaptic GABAergic terminals. NIC and EtOH, via these nAChRs, modulate VTA GABA neuronal function. This modulation may underlie NIC and EtOH reward and reinforcement, while pharmacological manipulation of these nAChRs may be a therapeutic strategy to treat NIC or EtOH dependence. This data demonstrates that in VTA GABA neurons, α7 nAChRs on GLUergic terminals play a key role in the mediation of local NIC-induced firing increase. α6*-nAChRs on GABA terminals enhances presynaptic GABA release, and leads to greater inhibition to VTA GABA neurons, which results in an increase VTA DA neuron firing via a disinhibition mechanism. Genetic knockout of these nAChRs significantly prevents EtOH-induced animal conditioned place preference (CPP). Furthermore, levo-tetrahydropalmadine (l-THP), a compound purified from natural Chinese herbs, blocks nAChRs, prevents NIC-induced DA neuronal firing, and eliminates NIC CPP, suggesting it as a promising candidate in a new generation of interventions for smoking cessation. Improved understanding of underlying mechanisms and development of new drugs will increase the number of successful quitters each year and dramatically improve the quality of life for millions suffering from addiction, as well as those around them.
ContributorsTaylor, Devin (Author) / Wu, Jie (Committee member) / Olive, M F (Committee member) / Whiteaker, Paul (Committee member) / Vu, Eric (Committee member) / Hammer, Ronald (Committee member) / Arizona State University (Publisher)
Created2015