Matching Items (23)
Filtering by

Clear all filters

152140-Thumbnail Image.png
Description
Specificity and affinity towards a given ligand/epitope limit target-specific delivery. Companies can spend between $500 million to $2 billion attempting to discover a new drug or therapy; a significant portion of this expense funds high-throughput screening to find the most successful target-specific compound available. A more recent addition to discovering

Specificity and affinity towards a given ligand/epitope limit target-specific delivery. Companies can spend between $500 million to $2 billion attempting to discover a new drug or therapy; a significant portion of this expense funds high-throughput screening to find the most successful target-specific compound available. A more recent addition to discovering highly specific targets is the application of phage display utilizing single chain variable fragment antibodies (scFv). The aim of this research was to employ phage display to identify pathologies related to traumatic brain injury (TBI), particularly astrogliosis. A unique biopanning method against viable astrocyte cultures activated with TGF-β achieved this aim. Four scFv clones of interest showed varying relative affinities toward astrocytes. One of those four showed the ability to identify reactive astroctyes over basal astrocytes through max signal readings, while another showed a statistical significance in max signal reading toward basal astrocytes. Future studies will include further affinity characterization assays. This work contributes to the development of targeting therapeutics and diagnostics for TBI.
ContributorsMarsh, William (Author) / Stabenfeldt, Sarah (Thesis advisor) / Caplan, Michael (Committee member) / Sierks, Michael (Committee member) / Arizona State University (Publisher)
Created2013
137469-Thumbnail Image.png
Description
Oxygen delivery is crucial for the development of healthy, functional tissue. Low tissue oxygenation, or hypoxia, is a characteristic that is common in many tumors. Hypoxia contributes to tumor malignancy and can reduce the success of chemotherapy and radiation treatment. There is a current need to noninvasively measure tumor oxygenation

Oxygen delivery is crucial for the development of healthy, functional tissue. Low tissue oxygenation, or hypoxia, is a characteristic that is common in many tumors. Hypoxia contributes to tumor malignancy and can reduce the success of chemotherapy and radiation treatment. There is a current need to noninvasively measure tumor oxygenation or pO2 in patients to determine a personalized treatment method. This project focuses on creating and characterizing nanoemulsions using a pO2 reporter molecule hexamethyldisiloxane (HMDSO) and its longer chain variants as well as assessing their cytotoxicity. We also explored creating multi-modal (MRI/Fluorescence) nanoemulsions.
ContributorsGrucky, Marian Louise (Author) / Kodibagkar, Vikram (Thesis director) / Rege, Kaushal (Committee member) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
136366-Thumbnail Image.png
Description
One of the most prominent biological challenges for the field of drug delivery is the blood-brain barrier. This physiological system blocks the entry of or actively removes almost all small molecules into the central nervous system (CNS), including many drugs that could be used to treat diseases in the CNS.

One of the most prominent biological challenges for the field of drug delivery is the blood-brain barrier. This physiological system blocks the entry of or actively removes almost all small molecules into the central nervous system (CNS), including many drugs that could be used to treat diseases in the CNS. Previous studies have shown that activation of the adenosine receptor signaling pathway through the use of agonists has been demonstrated to increase BBB permeability. For example, regadenoson is an adenosine A2A receptor agonist that has been shown to disrupt the BBB and allow for increased drug uptake in the CNS. The goal of this study was to verify this property of regadenoson. We hypothesized that co-administration of regadenoson with a non-brain penetrant macromolecule would facilitate its entry into the central nervous system. To test this hypothesis, healthy mice were administered regadenoson or saline concomitantly with a fluorescent dextran solution. The brain tissue was either homogenized to measure quantity of fluorescent molecule, or cryosectioned for imaging with confocal fluorescence microscopy. These experiments did not identify any significant difference in the amount of fluorescence detected in the brain after regadenoson treatment. These results contradict those of previous studies and highlight potential differences in injection methodology, time windows, and properties of brain impermeant molecules.
ContributorsWohlleb, Gregory Michael (Author) / Sirianni, Rachael (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
133517-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a major concern in public health due to its prevalence and effect. Every year, about 1.7 million TBIs are reported [7]. According to the According to the Centers for Disease Control and Prevention (CDC), 5.5% of all emergency department visits, hospitalizations, and deaths from 2002

Traumatic brain injury (TBI) is a major concern in public health due to its prevalence and effect. Every year, about 1.7 million TBIs are reported [7]. According to the According to the Centers for Disease Control and Prevention (CDC), 5.5% of all emergency department visits, hospitalizations, and deaths from 2002 to 2006 are due to TBI [8]. The brain's natural defense, the Blood Brain Barrier (BBB), prevents the entry of most substances into the brain through the blood stream, including medicines administered to treat TBI [11]. TBI may cause the breakdown of the BBB, and may result in increased permeability, providing an opportunity for NPs to enter the brain [3,4]. Dr. Stabenfeldt's lab has previously established that intravenously injected nanoparticles (NP) will accumulate near the injury site after focal brain injury [4]. The current project focuses on confirmation of the accumulation or extravasation of NPs after brain injury using 2-photon microscopy. Specifically, the project used controlled cortical impact injury induced mice models that were intravenously injected with 40nm NPs post-injury. The MATLAB code seeks to analyze the brain images through registration, segmentation, and intensity measurement and evaluate if fluorescent NPs will accumulate in the extravascular tissue of injured mice models. The code was developed with 2D bicubic interpolation, subpixel image registration, drawn dimension segmentation and fixed dimension segmentation, and dynamic image analysis. A statistical difference was found between the extravascular tissue of injured and uninjured mouse models. This statistical difference proves that the NPs do extravasate through the permeable cranial blood vessels in injured cranial tissue.
ContributorsIrwin, Jacob Aleksandr (Author) / Stabenfeldt, Sarah (Thesis director) / Bharadwaj, Vimala (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
190929-Thumbnail Image.png
Description
Magnetic resonance imaging (MRI) is the most powerful instrument for imaging anatomical structures. One of the most essential components of the MRI scanner is a radiofrequency (RF) coil. It induces resonant phenomena and receives the resonated RF signal from the body. Then, the signal is computed and reconstructed for MR

Magnetic resonance imaging (MRI) is the most powerful instrument for imaging anatomical structures. One of the most essential components of the MRI scanner is a radiofrequency (RF) coil. It induces resonant phenomena and receives the resonated RF signal from the body. Then, the signal is computed and reconstructed for MR images. Therefore, improving image quality by increasing the receiver's (Rx) efficiency is always remarkable. This research introduces a flexible and stretchable receive RF coil embedded in a dielectric-loaded material. Recent studies show that the adaptable coil can improve imaging quality by flexing and stretching to fit well with the sample's surface, reducing the spatial distance between the load and the coil. High permittivity dielectric material positioned between the coil and phantom was known to increase the RF field distribution's efficiency significantly. Recent studies integrating the high dielectric material with the coil show a significant improvement in signal-to-noise ratio (SNR), which can improve the overall efficiency of the coil. Previous research also introduced new elastic dielectric material, which shows improvement in uniformity when incorporated with an RF coil. Combining the adaptable RF coil with the elastic dielectric material has the potential to enhance the coil's performance further. The flexible dielectric material's limitations and unknown interaction with the coil pose a challenge. Thus, each component was integrated into a simple loop coil step-by-step, which allowed for experimentation and evaluation of the performance of each part. The mechanical performance was tested manually. The introduced coil is highly flexible and can stretch up to 20% of its original length in one direction. The electrical performance was evaluated in simulations and experiments on a 9.4T MRI scanner compared to conventional RF coils.
ContributorsHerabut, Chavalchart (Author) / Sohn, SungMin (Thesis advisor) / Sadleir, Rosalind (Committee member) / Beeman, Scott (Committee member) / Arizona State University (Publisher)
Created2023
190904-Thumbnail Image.png
Description
Allogeneic islet transplantation has the potential to reverse Type 1 Diabetes in patients. However, limitations such as chronic immunosuppression, islet donor numbers, and islet survival post-transplantation prevent the widespread application of allogeneic islet transplantation as the treatment of choice. Macroencapsulation devices have been widely used in allogeneic islet transplantation due

Allogeneic islet transplantation has the potential to reverse Type 1 Diabetes in patients. However, limitations such as chronic immunosuppression, islet donor numbers, and islet survival post-transplantation prevent the widespread application of allogeneic islet transplantation as the treatment of choice. Macroencapsulation devices have been widely used in allogeneic islet transplantation due to their capability to shield transplanted cells from the immune system as well as provide a supportive environment for cell viability, but macroencapsulation devices face oxygen transport challenges as their geometry increases from preclinical to clinical scales. The goal of this work is to generate complex 3D hydrogel macroencapsulation devices with sufficient oxygen transport to support encapsulated cell survival and generate these devices in a way that is accessible in the clinic as well as scaled manufacturing. A 3D-printed injection mold has been developed to generate hydrogel-based cell encapsulation devices with spiral geometries. The spiral geometry of the macroencapsulation device facilitates greater oxygen transport throughout the whole device resulting in improved islet function in vivo in a syngeneic rat model. A computational model of the oxygen concentration within macroencapsulation devices, validated by in vitro analysis, predicts that cells and islets maintain a greater viability and function in the spiral macroencapsulation device. To further validate the computational model, pO2 Reporter Composite Hydrogels (PORCH) are engineered to enable spatiotemporal measurement of oxygen tension within macroencapsulation devices using the Proton Imaging of Siloxanes to map Tissue Oxygenation Levels (PISTOL) magnetic resonance imaging approach. Overall, a macroencapsulation device geometry designed via computational modeling of device oxygen gradients and validated with magnetic resonance (MR) oximetry imaging enhances islet function and survival for islet transplantation.
ContributorsEmerson, Amy (Author) / Weaver, Jessica (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Sadleir, Rosalind (Committee member) / Stabenfeldt, Sarah (Committee member) / Wang, Kuei-Chun (Committee member) / Arizona State University (Publisher)
Created2023
Description

Polymeric nanoparticles (NP) consisting of Poly Lactic-co-lactic acid - methyl polyethylene glycol (PLLA-mPEG) or Poly Lactic-co-Glycolic Acid (PLGA) are an emerging field of study for therapeutic and diagnostic applications. NPs have a variety of tunable physical characteristics like size, morphology, and surface topography. They can be loaded with therapeutic and/or

Polymeric nanoparticles (NP) consisting of Poly Lactic-co-lactic acid - methyl polyethylene glycol (PLLA-mPEG) or Poly Lactic-co-Glycolic Acid (PLGA) are an emerging field of study for therapeutic and diagnostic applications. NPs have a variety of tunable physical characteristics like size, morphology, and surface topography. They can be loaded with therapeutic and/or diagnostic agents, either on the surface or within the core. NP size is an important characteristic as it directly impacts clearance and where the particles can travel and bind in the body. To that end, the typical target size for NPs is 30-200 nm for the majority of applications. Fabricating NPs using the typical techniques such as drop emulsion, microfluidics, or traditional nanoprecipitation can be expensive and may not yield the appropriate particle size. Therefore, a need has emerged for low-cost fabrication methods that allow customization of NP physical characteristics with high reproducibility. In this study we manufactured a low-cost (<$210), open-source syringe pump that can be used in nanoprecipitation. A design of experiments was utilized to find the relationship between the independent variables: polymer concentration (mg/mL), agitation rate of aqueous solution (rpm), and injection rate of the polymer solution (mL/min) and the dependent variables: size (nm), zeta potential, and polydispersity index (PDI). The quarter factorial design consisted of 4 experiments, each of which was manufactured in batches of three. Each sample of each batch was measured three times via dynamic light scattering. The particles were made with PLLA-mPEG dissolved in a 50% dichloromethane and 50% acetone solution. The polymer solution was dispensed into the aqueous solution containing 0.3% polyvinyl alcohol (PVA). Data suggests that none of the factors had a statistically significant effect on NP size. However, all interactions and relationships showed that there was a negative correlation between the above defined input parameters and the NP size. The NP sizes ranged from 276.144 ± 14.710 nm at the largest to 185.611 ± 15.634 nm at the smallest. In conclusion, the low-cost syringe pump nanoprecipitation method can achieve small sizes like the ones reported with drop emulsion or microfluidics. While there are trends suggesting predictable tuning of physical characteristics, significant control over the customization has not yet been achieved.

ContributorsDalal, Dhrasti (Author) / Stabenfeldt, Sarah (Thesis director) / Wang, Kuei-Chun (Committee member) / Flores-Prieto, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
189301-Thumbnail Image.png
Description
Cellular metabolism is an essential process required for tissue formation, energy production and systemic homeostasis and becomes dysregulated in many disease states. In the context of human cerebral cortex development, there’s a limited understanding of how metabolic pathways, such as glycolysis, impacts proliferation and differentiation of cortical cells. The technical

Cellular metabolism is an essential process required for tissue formation, energy production and systemic homeostasis and becomes dysregulated in many disease states. In the context of human cerebral cortex development, there’s a limited understanding of how metabolic pathways, such as glycolysis, impacts proliferation and differentiation of cortical cells. The technical challenges of studying primary in vivo cortical tissue at a cellular and molecular level led to the development of human pluripotent stem cell (PSC) derived cortical organoids. Cortical organoids are a highly tractable model system that can be used for high-throughput investigation of early stages of development and corresponding glycolytic programs. Through transplantation of cortical organoids into the developing mouse cortex, human cortical cells can also be studied in an in vivo environment that more closely resembles endogenous development where the impact of metabolism in typical developmental programs and disease states can be studied. While current data is preliminary, initial observations suggest that cortical populations increase glucose uptake over time and regulation of glucose uptake rates occur in cell type-specific manner. Additionally, mouse transplantation data suggests that glycolytic activity is downregulated post-transplantation, suggesting that the in vitro environment contributes metabolic state. The more dynamic range of metabolic states in vivo may impact the rate of differentiation and maturation in cellular populations in the transplant model. I hypothesize that the more endogenous-like regulation of glycolysis may impact the proliferative window and expansion of key progenitor cell types in the human brain, particularly the intermediate progenitor cells.
ContributorsMorales, Alexandria (Author) / Andrews, Madeline (Thesis advisor) / Newbern, Jason (Committee member) / Stabenfeldt, Sarah (Committee member) / Arizona State University (Publisher)
Created2023
193518-Thumbnail Image.png
Description
APOE encodes for a lipid transport protein and has three allelic variants-APOE ε2, ε3 and ε4 each of which differentially modulate the risk for Alzheimer’s disease (AD). The presence of the ε4 allele of APOE greatly increases AD risk compared to the presence of the more prevalent and risk neutral

APOE encodes for a lipid transport protein and has three allelic variants-APOE ε2, ε3 and ε4 each of which differentially modulate the risk for Alzheimer’s disease (AD). The presence of the ε4 allele of APOE greatly increases AD risk compared to the presence of the more prevalent and risk neutral ε3 allele. An imbalance in the generation and clearance of amyloid beta (Aβ) peptides has been hypothesized to play a key role in driving the disease. APOE4 impacts several AD-relevant cellular processes. However, it is unclear whether these effects represent a gain of toxic function or a loss of function, specifically as it relates to modulating amyloid beta (Aβ) levels. Here, a set of APOE knockout (KO) and APOE4 isogenic human induced pluripotent stem cells (hiPSCs) were generated from a parental APOE3 hiPSC line with a highly penetrant familial AD (fAD) mutation to investigate this with respect to Aβ secretion in neural cultures and Aβ uptake in monocultures of microglia-like cells (iMGLs). Conversion of APOE3 to E4 as well as functionally knocking APOE out from the APOE3 parental line, result in elevated Aβ levels in neural cultures, likely through multiple mechanisms including the altered processing of the precursor protein to Aβ called amyloid precursor protein (APP). In pure neuronal cultures, a shift in the processing of APP was observed with the Aβ-generating amyloidogenic pathway being favored in both APOE3 as well as APOE4 neurons compared to APOE KO neurons, with APOE4 neurons exhibiting a greater shift. In iMGLs derived from the isogenic hiPSC lines, expression of APOE, regardless of the isoform, lowered the uptake of Aβ. Overall, APOE4 modulates Aβ levels through distinct loss of protective and gain of function effects. Dissecting these effects would contribute towards a better understanding of the design of potential APOE-targeted therapeutics in the future.
ContributorsRajaram Srinivasan, Gayathri (Author) / Brafman, David (Thesis advisor) / Plaisier, Christopher (Committee member) / Newbern, Jason (Committee member) / Stabenfeldt, Sarah (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2024
157420-Thumbnail Image.png
Description
The research question explored in this thesis is how CRISPR mediated editing is influenced by artificially opened chromatin in cells. Closed chromatin poses a barrier to Cas9 binding and editing at target genes. Synthetic pioneer factors (PFs) are a promising new approach to artificially open condensed heterochromatin allowing greater access

The research question explored in this thesis is how CRISPR mediated editing is influenced by artificially opened chromatin in cells. Closed chromatin poses a barrier to Cas9 binding and editing at target genes. Synthetic pioneer factors (PFs) are a promising new approach to artificially open condensed heterochromatin allowing greater access of target DNA to Cas9. The Haynes lab has constructed fusions of enzymatic chromatin-modifying domains designed to remodel chromatin and increase Cas9 editing efficiency. With a library of PFs available, this research focuses on analyzing the behavior of Cas9 in chromatin that has been artificially opened by PFs. The types and frequency of INDELs (insertions & deletions) were determined after non-homologous end joining (NHEJ) in PF and Cas9-treated cells using quantitative Sanger sequencing and Synthego’s ICE software. Furthermore, NOME-seq analysis was carried out to map nucleosome position in PF and Cas9 treated cells. Although this experiment was unsuccessful, the heat map generated with data obtained from Synthego ICE predicts a possible presence of nucleosome in the vicinity suggesting that perhaps a fully open chromatin state was not achieved. Linear Regression analysis with certain assumptions confirms that with the increase in distance downstream of cut-site, the editing frequency decreases exponentially. Nevertheless, further experimental work should be carried out to investigate this hypothesis.
ContributorsHamna, Syeda Fatima (Author) / Haynes, Karmella A (Thesis advisor) / Stabenfeldt, Sarah (Thesis advisor) / Tian, Xiaojun (Committee member) / Arizona State University (Publisher)
Created2019