Description
This study has the objective to better constrain the role played by thermal erosion by turbulent lava in the formation of large channels on Mars and the Moon. On Mars, a rigorous one-dimensional model was used to test whether lava

This study has the objective to better constrain the role played by thermal erosion by turbulent lava in the formation of large channels on Mars and the Moon. On Mars, a rigorous one-dimensional model was used to test whether lava might have excavated the Athabasca Valles outflow channel. Calculated erosion depths are much lower than the measured depths of the channel, and suggest a limited role played by thermal erosion in excavating it. On the Moon, the investigation focused on the outer and inner sinuous rilles of Vallis Schröteri. At this site, erosional features cannot be explained by one- and two-dimensional models. The first 3-D model of thermal erosion by turbulent lava on the Moon was created to relate the spatial distribution of erosion rates over the bed and banks of a channel with changes in fluid- and thermodynamic parameters. The turbulence model chosen for each steady-state simulation is the Shear Stress Transport (SST) k-ω model and OpenFOAM is the Computational Fluid Dynamics software used. At the 150-km-long, 4-km-wide, and up-to 700-m-deep outer rille, I aimed to determine maximum erosion rates at/near the lava source and rille segments 1-km-long and 4-km-wide were chosen for the simulations. By adopting the obtained maximum erosion rates of 1 m/day, lava might have taken ~2 years to excavate the 700-m-deep depression. These fast erosion rates were unlikely maintained downstream of the lava source unless lava flowed in a tube. Besides, observational evidence suggests that tectonics and constructional processes likely contributed to rille development. On these grounds, thermal or thermo-mechanical erosion might have contributed to rille formation at a later stage. At the Vallis Schröteri inner rille, 1-km-long and 160-m-wide meandering channels were chosen. In one scenario, lava loses heat by radiation, in the other flows in a tube. Using the calculated (and conservative) erosion rate of 50 cm/day, it would have taken ~6 months for the 90-m deep inner rille to be excavated. A mechanism of secondary flow circulation analogous to that found in meandering rivers potentially explains meander generation. At each bend, downstream and cross-stream velocity variations lead to local temperature/ erosion enhancements.
Reuse Permissions
  • Downloads
    pdf (16.9 MB)

    Details

    Title
    • 3-D Modeling of the Erosional Potential of Turbulent Lava applied to Lunar Sinuous Rilles
    Contributors
    Date Created
    2022
    Subjects
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2022
    • Field of study: Geological Sciences

    Machine-readable links