130967-Thumbnail Image.png
Description
Exposure of harmful ultraviolet rays (UV) is a great concern in many locations around the world, as skin diseases and cancer continue to surge. With the number of skin cancer skyrocketing past all the types of known cancers, a vast

Exposure of harmful ultraviolet rays (UV) is a great concern in many locations around the world, as skin diseases and cancer continue to surge. With the number of skin cancer skyrocketing past all the types of known cancers, a vast majority of cases are reported daily. When the skin is exposed to UVA or UVB radiation, primarily from the sun, the UV radiation damages the DNA within the cells, which results in skin cancer. However, most damaged DNA of cells can undergo nucleotide excision repair. This involves a nuclease molecule that cuts the damaged bases. Preliminary research has developed other ways of repairing DNA damage in cells by implementing organic compounds. An organic chemical such as, ferulic acid has the ability to aid the mechanisms involved in nucleotide excision repair that takes place in your cells after DNA damage.

To test this, Saccharomyces cerevisiae was utilized. This is a primary model used in most medicinal studies due to the resemblance to human cells. This study evaluates the effect of ferulic acid, concentrations on ultraviolet radiated Rad 1 (mutant) and HB0 (wild type) yeast cells. The yeast strains were grown in two different concentrations for ferulic acid and treated with long-wave UV light under 30 seconds, 45 seconds, and 60 seconds. It is observed that, Rad 1 had heavier growth in the presence of high concentration of ferulic acid after UV treatment than HB0. But, HB0 yeast had heavier growth in the presence of lower concentrations of ferulic acid after UV treatment. Ferulic acid concentrations of 1 mM can influence cell repair after UV application by mRNA expression during nucleotide excision repair and higher absorption of UV.
477.51 KB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • The Effects of Ferulic Acid Concentration on Yeast DNA Repair After Exposure to UV Radiation
Contributors
Date Created
2020-12
Resource Type
  • Text
  • Machine-readable links