Description

The Martian satellite Phobos is criss-crossed by linear grooves and crater chains whose origin is unexplained. Anomalous grooves are relatively young, and crosscut tidally predicted stress fields as Phobos spirals towards Mars. Here we report strong correspondence between these anomalous

The Martian satellite Phobos is criss-crossed by linear grooves and crater chains whose origin is unexplained. Anomalous grooves are relatively young, and crosscut tidally predicted stress fields as Phobos spirals towards Mars. Here we report strong correspondence between these anomalous features and reaccretion patterns of sesquinary ejecta from impacts on Phobos. Escaping ejecta persistently imprint Phobos with linear, low-velocity crater chains (catenae) that match the geometry and morphology of prominent features that do not fit the tidal model. We prove that these cannot be older than Phobos’ current orbit inside Mars’ Roche limit. Distinctive reimpact patterns allow sesquinary craters to be traced back to their source, for the first time across any planetary body, creating a novel way to probe planetary surface characteristics. For example, we show that catena-producing craters likely formed in the gravity regime, providing constraints on the ejecta velocity field and knowledge of source crater material properties.

Reuse Permissions
  • Downloads
    pdf (2.6 MB)

    Details

    Title
    • Sesquinary Catenae on the Martian Satellite Phobos From Reaccretion of Escaping Ejecta
    Contributors
    Date Created
    2016-08-30
    Resource Type
  • Text
  • Collections this item is in
    Identifier
    • Digital object identifier: 10.1038/ncomms12591
    • Identifier Type
      International standard serial number
      Identifier Value
      2041-1723
    Note

    Citation and reuse

    Cite this item

    This is a suggested citation. Consult the appropriate style guide for specific citation guidelines.

    Nayak, M., & Asphaug, E. (2016). Sesquinary catenae on the Martian satellite Phobos from reaccretion of escaping ejecta. Nature Communications, 7, 12591. doi:10.1038/ncomms12591

    Machine-readable links