Description

Extremal graph theory results often provide minimum degree

conditions which guarantee a copy of one graph exists within

another. A perfect $F$-tiling of a graph $G$ is a collection

$\mathcal{F}$ of subgraphs of

Extremal graph theory results often provide minimum degree

conditions which guarantee a copy of one graph exists within

another. A perfect $F$-tiling of a graph $G$ is a collection

$\mathcal{F}$ of subgraphs of $G$ such that every element of

$\mathcal{F}$ is isomorphic to $F$ and such that every vertex in $G$

is in exactly one element of $\mathcal{F}$. Let $C^{3}_{t}$ denote

the loose cycle on $t = 2s$ vertices, the $3$-uniform hypergraph

obtained by replacing the edges $e = \{u, v\}$ of a graph cycle $C$

745.14 KB application/pdf

Download count: 0

Details

Contributors
Date Created
  • 2019
Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2019
      Note type
      thesis
    • Includes bibliographical references (pages 96-97)
      Note type
      bibliography
    • Field of study: Mathematics

    Citation and reuse

    Statement of Responsibility

    by Roy Oursler

    Machine-readable links