Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. Barrett, The Honors College Thesis/Creative Project Collection
  4. Identification of Mycobacterium smegmatis and antibiotic resistance through the utilization of high titer mycobacteriophage concentrations and MALDI-TOF MS
  5. Full metadata

Identification of Mycobacterium smegmatis and antibiotic resistance through the utilization of high titer mycobacteriophage concentrations and MALDI-TOF MS

Full metadata

Description

The diagnosis of bacterial infections based on phage multiplication has the potential for profound clinical implications, particularly for antibiotic-resistant strains and the slow-growing Mycobacterium tuberculosis. The possibility of hastening the diagnosis of antibiotic-resistant mycobacterial infections was accomplished via the study of Mycobacterium smegmatis, a generally non-pathogenic, comparatively fast growing microorganism to M. tuberculosis. These proof-of-concept studies established that after transduction of M. smegmatis cells with bacteriophages, MALDI-TOF MS could be used to detect increased amounts of phage proteins. Recording the growth of M. smegmatis over an 8-hour period, starting with very low OD600 measurements, simulated bacterial loads in clinical settings. For the purposes of MALDI-TOF MS, the procedure for the most effective lethal exposure for M. smegmatis was determined to be a 1-hour incubation in a 95°C water bath. Successful precipitation of the lytic mycobacteriophages D29 and Giles was performed using chloroform and methanol and overlaid with 1-2 μL of α-cyano-4-hydoxycinnaminic acid, which allowed for more distinct and repeatable MALDI-TOF MS spectra. Phage D29 was found to produce an m/z peak at 18.477 kDa, which may have indicated a 2+-charged ion of the 34.8 kDa minor tail protein. The Giles proteins that were identified with MALDI-TOF MS have not been directly compared to protein values reported in the scientific literature. However, the MALDI-TOF MS spectra suggested that distinct peaks existed between M. smegmatis mc2155 and mycobacteriophages, indicating that successful infection with lytic phage and replication thereafter may have occurred. The distinct peaks between M. smegmatis and the phage can be used as indicators of the presence of mycobacteria. At this point, the limits of detection of each phage must be elucidated in order for MALDI-TOF MS spectra to be successfully implemented as a mechanism to rapidly detect antibiotic-resistant mycobacteria.

Date Created
2015-05
Contributors
  • Barrett, Rachael Lauren (Author)
  • Haydel, Shelley (Thesis director)
  • Sandrin, Todd (Committee member)
  • Maarsingh, Jason (Committee member)
  • Barrett, The Honors College (Contributor)
  • School of Life Sciences (Contributor)
Topical Subject
  • Giles
  • M. smegmatis
  • Mycobacteria
  • Antibiotic Resistance
  • D29
  • Rapid Diagnosis of TB
  • PhAE87
  • MALDI-TOF
  • Tuberculosis
  • MALDI-TOF MS
  • Mycobacteriophage
  • Mycobacterium smegmatis
  • Phage
Resource Type
Text
Extent
26 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Barrett, The Honors College Thesis/Creative Project Collection
Series
Academic Year 2014-2015
Handle
https://hdl.handle.net/2286/R.I.29281
Level of coding
minimal
Cataloging Standards
asu1
System Created
  • 2017-10-30 02:50:57
System Modified
  • 2021-08-11 04:09:57
  •     
  • 10 months 1 week ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM Dataverse
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-two Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. #1 ASU, #2 Stanford, #3 MIT. - U.S. News and World Report, 5 years, 2016-2020
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency