A collection of scholarly work published by and supporting the Center for Earth Systems Engineering and Management (CESEM) at Arizona State University.

CESEM focuses on "earth systems engineering and management," providing a basis for understanding, designing, and managing the complex integrated built/human/natural systems that increasingly characterize our planet.

Works in this collection are particularly important in linking engineering, technology, and sustainability, and are increasingly intertwined with the work of ASU's Global Institute of Sustainability (GIOS).

Collaborating Institutions:
School of Sustainable Engineering and the Built Environment (SSEBE), Center for Earth Systems Engineering and Management
Displaying 1 - 3 of 3
Filtering by

Clear all filters

Description

This report is the consolidated work of an interdisciplinary course project in CEE494/598, CON598, and SOS598, Urban Infrastructure Anatomy and Sustainable Development. In Fall 2012, the course at Arizona State University used sustainability research frameworks and life-cycle assessment methods to evaluate the comprehensive benefits and costs when transit-oriented development is

This report is the consolidated work of an interdisciplinary course project in CEE494/598, CON598, and SOS598, Urban Infrastructure Anatomy and Sustainable Development. In Fall 2012, the course at Arizona State University used sustainability research frameworks and life-cycle assessment methods to evaluate the comprehensive benefits and costs when transit-oriented development is infilled along the proposed light rail transit line expansion. In each case, and in every variation of possible future scenarios, there were distinct life-cycle benefits from both developing in more dense urban structures and reducing automobile travel in the process.

Results from the report are superseded by our publication in Environmental Science and Technology.

Created2012-12
Description

As the number of heat waves are expected to increase significantly into the future in the U.S. Southwest, new insight is needed into how urban infrastructure can be repositioned to protect people. In the Phoenix metro area infrastructure have largely been deployed over the past half century, during a time

As the number of heat waves are expected to increase significantly into the future in the U.S. Southwest, new insight is needed into how urban infrastructure can be repositioned to protect people. In the Phoenix metro area infrastructure have largely been deployed over the past half century, during a time when climate change was not a concern. Now, as the county struggles to protect people from heat, there is a need to reassess how existing and new infrastructure can be positioned to reduce health impacts while improving sustainability. Using a neighborhood in Mesa, Arizona as a case study, we assess how changes to transportation infrastructure, building infrastructure, and landscaping can reduce heat exposure. A number of strategies are considered including the optimal deployment of heat refuges, deploying less convective surface materials, and deploying more thermally preferable building materials. The suite of strategies could be considered by cities throughout the Phoenix metro area.

Description

This research study presents a life cycle assessment comparing the potential environmental impacts of two concrete construction methods used for building construction projects: Pre-cast and Cast-in-place concrete. The objective of the study was to provide a beneficial assessment of the potential environmental impacts by quantifying global warming potential, acidification and

This research study presents a life cycle assessment comparing the potential environmental impacts of two concrete construction methods used for building construction projects: Pre-cast and Cast-in-place concrete. The objective of the study was to provide a beneficial assessment of the potential environmental impacts by quantifying global warming potential, acidification and eutrophication associated with the two construction methods. Data for the two construction methods came from numerous industry reports and relatively recent journal article publications on the subject, although a majority of the data came from the Portland Cement Association’s Annual U.S. and Canadian Labor Energy Input Survey.

Created2014-06-13