A collection of scholarly work published by and supporting the Center for Earth Systems Engineering and Management (CESEM) at Arizona State University.

CESEM focuses on "earth systems engineering and management," providing a basis for understanding, designing, and managing the complex integrated built/human/natural systems that increasingly characterize our planet.

Works in this collection are particularly important in linking engineering, technology, and sustainability, and are increasingly intertwined with the work of ASU's Global Institute of Sustainability (GIOS).

Collaborating Institutions:
School of Sustainable Engineering and the Built Environment (SSEBE), Center for Earth Systems Engineering and Management
Displaying 1 - 2 of 2
Filtering by

Clear all filters

Description

Urban landscaping palm tree waste in the form of palm frond trimmings and bark shavings that is currently handled as municipal solid waste by the City of Phoenix and other major municipalities can be handled in more cost effective ways and lead to reductions in emissions and greenhouse gases. While many cities have

Urban landscaping palm tree waste in the form of palm frond trimmings and bark shavings that is currently handled as municipal solid waste by the City of Phoenix and other major municipalities can be handled in more cost effective ways and lead to reductions in emissions and greenhouse gases. While many cities have green organics collection and diversion programs, they always exclude palm tree waste due to its unique properties. As a result, an unknown tonnage of palm tree waste is annually landfilled as municipal solid waste. Additionally, as the tonnage is unknown, so are the associated emissions, greenhouse gases, and costs. An attributional lifecycle assessment was conducted in the City of Phoenix from the perspective responsibility of the City of Phoenix’s Public Works Department.

Created2013-05
Description

Recent developments in computational software and public accessibility of gridded climatological data have enabled researchers to study Urban Heat Island (UHI) effects more systematically and at a higher spatial resolution. Previous studies have analyzed UHI and identified significant contributors at the regional level for cities, within the topology of urban

Recent developments in computational software and public accessibility of gridded climatological data have enabled researchers to study Urban Heat Island (UHI) effects more systematically and at a higher spatial resolution. Previous studies have analyzed UHI and identified significant contributors at the regional level for cities, within the topology of urban canyons, and for different construction materials.

In UHIs, air is heated by the convective energy transfer from land surface materials and anthropogenic activities. Convection is dependent upon the temperature of the surface, temperature of the air, wind speed, and relative humidity. At the same time, air temperature is also influenced by greenhouse gases (GHG) in the atmosphere. Climatologists project a 1-5°C increase in near-surface air temperature over the next several decades, and 1-4°C specifically for Los Angeles and Maricopa during summertime due to GHG effects. With higher ambient air temperatures, we seek to understand how convection will change in cities and to what ends.

In this paper we develop a spatially explicit methodology for quantifying UHI by estimating the daily convection thermal energy transfer from land to air using publicly-available gridded climatological data, and we estimate how much additional energy will be retained due to lack of convective cooling in scenarios of higher ambient air temperature.